
SAND2006-6337
Unlimited Release

October 2006

DAKOTA, A Multilevel Parallel Object-Oriented Framework for
Design Optimization, Parameter Estimation, Uncertainty

Quantification, and Sensitivity Analysis

Version 4.0 User’s Manual

Michael S. Eldred, Shannon L. Brown, Brian M. Adams, Daniel M. Dunlavy,
David M. Gay, Laura P. Swiler

Optimization and Uncertainty Estimation Department

Anthony A. Giunta
Validation and Uncertainty Quantification Processes Department

William E. Hart, Jean-Paul Watson
Discrete Algorithms and Math Department

John P. Eddy
System Sustainment and Readiness Technologies Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185

Josh D. Griffin, Patty D. Hough, Tammy G. Kolda, Monica L. Martinez-Canales,
Pamela J. Williams

Computational Sciences and Mathematics Research Department

Sandia National Laboratories
P.O. Box 969

Livermore, CA 94551

4

Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and
extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for
optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability,
and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitiv-
ity/variance analysis with design of experiments and parameter study methods. These capabilities may be used
on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer
nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement
abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flex-
ible and extensible problem-solving environment for design and performance analysis of computational models
on high performance computers.

This report serves as a user’s manual for the DAKOTA software and provides capability overviews and procedures
for software execution, as well as a variety of example studies.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Contents

Preface 11

1 Introduction 13

1.1 Motivation for DAKOTA Development. .13

1.2 Capabilities of DAKOTA .14

1.3 How Does DAKOTA Work? .14

1.4 Background and Mathematical Formulations. .15

1.5 Using this Manual. .19

2 Getting Started with DAKOTA 21

2.1 Installation Guide. .21

2.2 Rosenbrock and Textbook Test Problems. .24

2.3 DAKOTA Input File Format .26

2.4 Example Problems. .28

2.5 Where to Go from Here. .50

3 DAKOTA Capability Overview 53

3.1 Purpose. .53

3.2 Parameter Study Methods. .53

3.3 Design of Experiments. .53

3.4 Uncertainty Quantification. .54

3.5 Optimization Software Packages. .55

3.6 Additional Optimization Capabilities. .57

3.7 Nonlinear Least Squares for Parameter Estimation. 58

3.8 Optimization Strategies. .58

3.9 Surrogate Models. .59

6 CONTENTS

3.10 Nested Models .60

3.11 Parallel Computing. .61

3.12 Summary .61

4 Parameter Study Capabilities 63

4.1 Overview .63

4.2 Vector Parameter Study. .64

4.3 List Parameter Study. .66

4.4 Centered Parameter Study. .67

4.5 Multidimensional Parameter Study. .68

5 Design of Experiments Capabilities 71

5.1 Overview .71

5.2 Design of Computer Experiments. .71

5.3 DDACE Background. .73

5.4 FSUDace Background. .76

5.5 Sensitivity Analysis. .77

6 Uncertainty Quantification Capabilities 79

6.1 Overview .79

6.2 Sampling Methods. .79

6.3 Reliability Methods. .85

6.4 Polynomial Chaos Methods. .95

6.5 Epistemic Nondeterministic Methods. .95

6.6 Future Nondeterministic Methods. .98

7 Optimization Capabilities 103

7.1 Overview .103

7.2 Optimization Software Packages. .104

7.3 Additional Optimization Capabilities. .108

8 Nonlinear Least Squares Capabilities 115

8.1 Overview .115

8.2 Solution Techniques. .116

8.3 Examples .117

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

CONTENTS 7

9 Advanced Optimization Strategies 119

9.1 Overview .119

9.2 Multilevel Hybrid Optimization .119

9.3 Multistart Local Optimization .120

9.4 Pareto Optimization. .123

9.5 Mixed Integer Nonlinear Programming (MINLP). .123

9.6 Surrogate-Based Optimization (SBO). .126

10 Models 137

10.1 Overview .137

10.2 Single Models. .138

10.3 Surrogate Models. .138

10.4 Nested Models .144

10.5 Advanced Examples. .144

11 Variables 155

11.1 Overview .155

11.2 Design Variables. .155

11.3 Uncertain Variables. .156

11.4 State Variables. .157

11.5 Mixed Variables. .158

11.6 DAKOTA Parameters File Data Format. .158

11.7 The Active Set Vector. .162

12 Interfaces 163

12.1 Overview .163

12.2 Algebraic Mappings. .163

12.3 Simulation Interfaces. .166

12.4 Simulation Interface Components. .168

12.5 Simulation File Management. .173

12.6 Parameter to Response Mappings. .175

13 Responses 181

13.1 Overview .181

13.2 DAKOTA Results File Data Format. .182

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

8 CONTENTS

13.3 Active Variables for Derivatives. .184

14 Inputs to DAKOTA 185

14.1 Overview of Inputs. .185

14.2 JAGUAR .185

14.3 Data Imports .187

15 Output from DAKOTA 193

15.1 Overview of Output Formats. .193

15.2 Standard Output. .193

15.3 Tabular Output Data. .199

15.4 Graphics Output. .199

15.5 Error Messages Output. .202

16 Advanced Simulation Code Interfaces 205

16.1 Building an Interface to a Engineering Simulation Code. .205

16.2 Developing a Direct Simulation Interface. .213

17 Parallel Computing 215

17.1 Overview .215

17.2 Single-level parallelism. .218

17.3 Multilevel parallelism. .228

17.4 Capability Summary. .231

17.5 Running a Parallel DAKOTA Job. .232

17.6 Specifying Parallelism. .233

18 DAKOTA Usage Guidelines 243

18.1 Problem Exploration. .243

18.2 Optimization Method Selection. .243

18.3 UQ Method Selection. .246

18.4 Parameter Study/DOE/DACE/Sampling Method Selection. .247

19 Restart Capabilities and Utilities 249

19.1 Restart Management. .249

19.2 The DAKOTA Restart Utility. .250

20 Simulation Failure Capturing 255

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

CONTENTS 9

20.1 Failure detection .255

20.2 Failure communication. .256

20.3 Failure mitigation. .256

21 Additional Examples 259

21.1 Textbook Example. .259

21.2 Rosenbrock Example. .261

21.3 Cylinder Head Example. .265

21.4 Container Example. .268

21.5 Log Ratio Example. .271

21.6 Steel Section Example. .271

21.7 Portal Frame Example. .272

21.8 Short Column Example. .272

21.9 Cantilever Example. .274

21.10Steel Column Example. .276

21.11Multiobjective Examples. .277

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

10 CONTENTS

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Preface

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) project started in 1994 as an
internal research and development activity at Sandia National Laboratories in Albuquerque, New Mexico. The
original goal of this effort was to provide a common set of optimization tools for a group of engineers who were
solving structural analysis and design problems. Prior to the start of the DAKOTA project, there was not a focused
effort to archive the optimization methods for reuse on other projects. Thus, for each new project the engineers
found themselves custom building new interfaces between the engineering analysis software and the optimization
software. This was a particular burden when attempts were made to use parallel computing resources, where
each project required the development of a unique master program that coordinated concurrent simulations on a
network of workstations or a parallel computer. The initial DAKOTA toolkit provided the engineering and analysis
community at Sandia Labs with access to a variety of different optimization methods and algorithms, with much
of the complexity of the optimization software interfaces hidden from the user. Thus, the engineers were easily
able to switch between optimization software packages simply by changing a few lines in the DAKOTA input file.
In addition to applications in structural analysis, DAKOTA has been applied to applications in computational fluid
dynamics, nonlinear dynamics, shock physics, heat transfer, and many others.

DAKOTA has grown significantly beyond its original focus as a toolkit of optimization methods. In addition
to having many state-of-the-art optimization methods, DAKOTA now includes methods for global sensitivity
and variance analysis, parameter estimation, and uncertainty quantification, as well as meta-level strategies for
surrogate-based optimization, mixed-integer nonlinear programming, hybrid optimization, and optimization un-
der uncertainty. Underlying all of these algorithms is support for parallel computation; ranging from the level of
a desktop multiprocessor computer up to massively parallel computers found at national laboratories and super-
computer centers.

This document corresponds to DAKOTA Version 4.0. Release notes for this release, past releases, and current de-
velopmental releases are available fromhttp://www.cs.sandia.gov/DAKOTA/licensing/release_
notes.html . Starting with Version 3.0, DAKOTA has been publicly released as open source under a GNU Gen-
eral Public License and is available for free download world-wide. Seehttp://www.gnu.org/licenses/
gpl.html for more information on the GPL software use agreement. The objective of this public release is
to facilitate research and software collaborations among the developers of DAKOTA at Sandia National Lab-
oratories and other institutions, including academic, governmental, and corporate entities. For more informa-
tion on the objectives of the open source release and how to contribute, refer to the DAKOTA FAQ athttp:
//www.cs.sandia.gov/DAKOTA/faq.html .

The DAKOTA leadership team consists of Mike Eldred (principal investigator), Tony Giunta (product manager),
Shane Brown (support manager), and Scott Mitchell (department manager). DAKOTA development team mem-
bers include Brian Adams, Danny Dunlavy, John Eddy, David Gay, Bill Hart, Laura Swiler, and Pam Williams. In
addition, contributors to the COLINY, PICO, OPT++, DDACE, APPS, FSUDace, Surfpack, and DAKOTA/UQ
libraries used by DAKOTA include Josh Griffin, Patty Hough, Tammy Kolda, Monica Martinez-Canales, and
Jean-Paul Watson from Sandia; as well as John Burkardt from Florida State University, Prof. Jonathan Eckstein

http://www.cs.sandia.gov/DAKOTA/licensing/release_notes.html
http://www.cs.sandia.gov/DAKOTA/licensing/release_notes.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.cs.sandia.gov/DAKOTA/faq.html
http://www.cs.sandia.gov/DAKOTA/faq.html

12 CONTENTS

from Rutgers University; Prof. Roger Ghanem from Johns Hopkins University; Mark Richards from the Univer-
sity of Illinois, Prof. Virginia Torczon from the College of William and Mary, and Prof. Steve Wojtkiewicz from
the University of Minnesota.

Contact Information :

Michael Eldred, Principal Investigator - DAKOTA Project
Sandia National Laboratories
P.O. Box 5800, Mail Stop 0370
Albuquerque, NM 87185-0370

email: dakota-developers@development.sandia.gov
web: http://www.cs.sandia.gov/DAKOTA/software.html

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

mailto:dakota-developers@development.sandia.gov
http://www.cs.sandia.gov/DAKOTA/software.html

Chapter 1

Introduction

1.1 Motivation for DAKOTA Development

Computational models are commonly used in engineering design activities for simulating complex physical sys-
tems in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear structural mechanics,
shock physics, and many others. These simulators can be an enormous aid to engineers who want to develop
an understanding and/or predictive capability for the complex behaviors that are often observed in the respective
physical systems. Often, these simulators are employed as virtual prototypes, where a set of predefined system
parameters, such as size or location dimensions and material properties, are adjusted to improve or optimize the
performance of a particular system, as defined by one or more system performance objectives. Optimization of
the virtual prototype then requires execution of the simulator, evaluation of the performance objective(s), and
adjustment of the system parameters in an iterative and directed way, such that an improved or optimal solution
is obtained for the simulation as measured by the performance objective(s). System performance objectives can
be formulated, for example, to minimize weight, cost, or defects; to limit a critical temperature, stress, or vibra-
tion response; or to maximize performance, reliability, throughput, agility, or design robustness. In addition, one
would often like to design computer experiments, run parameter studies, or perform uncertainty quantification.
These methods allow one to understand how the system performance changes as a design variable or an uncertain
input changes. Sampling strategies are often used in uncertainty quantification to calculate a distribution on sys-
tem performance measures, and to understand which uncertain inputs are the biggest contributors to the variance
of the outputs.

One of the primary motivations for the development of DAKOTA (Design Analysis Kit for Optimization and
Terascale Applications) has been to provide engineers with a systematic and rapid means of obtaining improved or
optimal designs using their simulator-based models. Making this capability available to engineers generally leads
to better designs and improved system performance at earlier stages of the design phase, and eliminates some of
the dependence on real prototypes and testing, thereby shortening the design cycle and reducing overall product
development costs. In addition to providing this environment for answering systems performance questions,
the DAKOTA toolkit also provides an extensible platform for the research and rapid prototyping of customized
methods and strategies [26].

14 CHAPTER 1. INTRODUCTION

1.2 Capabilities of DAKOTA

The DAKOTA toolkit provides a flexible, extensible interface between your simulation code and a variety of it-
erative methods and strategies. While DAKOTA was originally conceived as an easy-to-use interface between
simulation codes and optimization algorithms, recent versions have been expanded to interface with other types
of iterative analysis methods such as uncertainty quantification with nondeterministic propagation methods, pa-
rameter estimation with nonlinear least squares solution methods, and sensitivity/variance analysis with general-
purpose design of experiments and parameter study capabilities. These capabilities may be used on their own or
as building blocks within more sophisticated strategies such as hybrid optimization, surrogate-based optimization,
mixed integer nonlinear programming, or optimization under uncertainty.

Thus, one of the primary advantages that DAKOTA has to offer is that access to a very broad range of iterative
capabilities can be obtained through a single, relatively simple interface between DAKOTA and your simulator.
Should you want to try a different type of iterative method or strategy with your simulator, it is only necessary to
change a few commands in the DAKOTA input and start a new analysis. The need to learn a completely different
style of command syntax and the need to construct a new interface each time you want to use a new algorithm are
eliminated.

1.3 How Does DAKOTA Work?

Figure1.1depicts the loosely-coupled, or “black-box,” relationship between DAKOTA and the simulation code(s).
This loose coupling is the simplest approach and is the one that most DAKOTA users will employ. Data is
exchanged between DAKOTA and the simulation code by reading and writing short data files, and DAKOTA does
not require access to the source code of the user’s simulation software. DAKOTA is executed using commands
that the user supplies in an input file (not shown in Figure1.1) which specify the type of analysis to be performed
(e.g., parameter study, optimization, uncertainty estimation, etc.), along with the file names associated with the
user’s simulation code. During its operation, DAKOTA automatically executes the user’s simulation code by
creating a separate process that is external to DAKOTA.

The solid lines in Figure1.1 denote file input/output (I/O) operations that are part of DAKOTA or the user’s
simulation code. The dotted lines indicate the passing of information that must be handled by the user. As
DAKOTA is running, it writes out a parameters file that contains the values of the current variables. DAKOTA
then starts the user’s simulation code (or, often, a short driver script), and when the simulation has completed,
DAKOTA reads in the response data from a results file. This process is repeated until all of the simulation code
runs required by the iterative study have been completed.

In some cases it is advantageous to have a close coupling between DAKOTA and the user’s simulation code.
This close coupling is an advanced feature of DAKOTA and is accomplished through either a direct interface or a
SAND (simultaneous analysis and design) interface. For the direct interface, the user’s simulation code is modified
to behave as a function or subroutine under DAKOTA. This interface can be considered to be “semi-intrusive”
in that it requires relatively minor modifications to the simulation code. Its major advantage is the elimination
of the overhead resulting from file I/O and process creation. It can also be a useful tool for parallel processing,
by encapsulating everything within a single executable. A SAND interface approach is “fully intrusive” in that
it requires further modifications to the simulation code so that an optimizer has access to the internal residual
vector and Jacobian matrices computed by the simulation code. In a SAND approach, both the optimization
method and a nonlinear simulation code are converged simultaneously. While this approach can greatly reduce
the computational expense of optimization, considerable software development effort must be expended to achieve
this intrusive coupling between SAND optimization methods and the simulation code.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

1.4. BACKGROUND AND MATHEMATICAL FORMULATIONS 15

Figure 1.1: The loosely-coupled or “black-box” interface between DAKOTA and a user-supplied simulation code.

1.4 Background and Mathematical Formulations

This section provides a basic introduction to the mathematical formulation of optimization, nonlinear least squares,
sensitivity analysis, design of experiments, and uncertainty quantification problems. The primary goal of this sec-
tion is to introduce terms relating to these topics, and is not intended to be a description of theory or numerical
algorithms. There are numerous sources of information on these topics ([4], [47], [55], [56], [75], [100]) and the
interested reader is advised to consult one or more of these texts.

1.4.1 Optimization

A general optimization problem is formulated as follows:

minimize: f(x)
x ∈ <n

subject to: gL ≤ g(x) ≤ gU
h(x) = ht (1.1)

aL ≤ Aix ≤ aU
Aex = at
xL ≤ x ≤ xU

where vector and matrix terms are marked in bold typeface. In this formulation,x = [x1, x2, . . . , xn] is an n-
dimensional vector of real-valueddesign variablesor design parameters. The n-dimensional vectors,xL andxU ,
are the lower and upper bounds, respectively, on the design parameters. These bounds define the allowable values
for the elements ofx, and the set of all allowable values is termed thedesign spaceor theparameter space. A
design pointor asample pointis a set of values for that fall within the parameter space.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

16 CHAPTER 1. INTRODUCTION

The optimization goal is to minimize theobjective function, f(x), while satisfying the constraints. Constraints
can be categorized as either linear or nonlinear and as either inequality or equality. Thenonlinear inequality
constraints, g(x), are “2-sided,” in that they have both lower and upper boundsgL, andgU , respectively. The
nonlinear equality constraints, h(x), have target values specified byht. The linear inequality constraints create
a linear systemAix, whereAi is the coefficient matrix for the linear system. These constraints are also 2-sided
as they have and as lower and upper bounds, respectively. The linear equality constraints create a linear system
Aex, whereAe is the coefficient matrix for the linear system and are the target values. The constraints partition
the parameter space into feasible and infeasible regions. A design point is said to befeasibleif and only if it
satisfies all of the constraints. Correspondingly, a design point is said to beinfeasibleif it violates one or more of
the constraints.

Many different methods exist to solve the optimization problem given by Equation1.1, all of which iterate on
x in some manner. That is, an initial value for each parameter inx is chosen, theresponse quantities, f(x),
g(x), h(x), are computed, and some algorithm is applied to generate a newx that will either reduce the objective
function, reduce the amount of infeasibility, or both. To facilitate a general presentation of these methods, three
criteria will be used in the following discussion to differentiate them: optimization problem type, search goal, and
search method.

The optimization problem typecan be characterized both by the types of constraints present in the problem and by
the linearity or nonlinearity of the objective and constraint functions. For constraint categorization, a hierarchy of
complexity exists for optimization algorithms, ranging from simple bound constraints, through linear constraints,
to full nonlinear constraints. By the nature of this increasing complexity, optimization problem categorizations
are inclusive of all constraint types up to a particular level of complexity. That is, anunconstrained problem
has no constraints, abound-constrained problemhas only lower and upper bounds on the design parameters, a
linearly-constrained problemhas both linear and bound constraints, and anonlinearly-constrained problemmay
contain the full range of nonlinear, linear, and bound constraints. If all of the linear and nonlinear constraints are
equality constraints, then this is referred to as anequality-constrained problem, and if all of the linear and non-
linear constraints are inequality constraints, then this is referred to as aninequality-constrained problem. Further
categorizations can be made based on the linearity of the objective and constraint functions. A problem where the
objective function and all constraints are linear is called alinear programming (LP) problem. These types of prob-
lems commonly arise in scheduling, logistics, and resource allocation applications. Likewise, a problem where
at least some of the objective and constraint functions are nonlinear is called anonlinear programming (NLP)
problem. These NLP problems predominate in engineering applications and are the primary focus of DAKOTA.

The search goalrefers to the ultimate objective of the optimization algorithm, i.e., either global or local optimiza-
tion. In global optimization, the goal is to find the design point that gives the lowest feasible objective function
value over the entire parameter space. In contrast, inlocal optimization, the goal is to find a design point that is
lowest relative to a “nearby” region of the parameter space. In almost all cases, global optimization will be more
computationally expensive than local optimization. Thus, the user must choose an optimization algorithm with an
appropriate search scope that best fits the problem goals and the computational budget.

The search methodrefers to the approach taken in the optimization algorithm to locate a new design point that
has a lower objective function or is more feasible than the current design point. The search method can be clas-
sified as eithergradient-basedor nongradient-based. In a gradient-based algorithm, gradients of the response
functions are computed to find the direction of improvement. Gradient-based optimization is the search method
that underlies many efficient local optimization methods. However, a drawback to this approach is that gradi-
ents can be computationally expensive, inaccurate, or even nonexistent. In such situations, nongradient-based
search methods may be useful. There are numerous approaches to nongradient-based optimization. Some of the
more well known of these include pattern search methods (nongradient-based local techniques) and genetic algo-
rithms (nongradient-based global techniques). Because of the computational cost of running simulation models,
surrogate-based optimization (SBO) methods are often used to reduce the number of actual simulation runs. In

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

1.4. BACKGROUND AND MATHEMATICAL FORMULATIONS 17

SBO, a surrogate or approximate model is constructed based on a limited number of simulation runs. The opti-
mization is then performed on the surrogate model. DAKOTA has an extensive framework for managing a variety
of global and local surrogates for use in optimization.

The overview of optimization methods presented above underscores that there is no single optimization method
or algorithm that works best for all types of optimization problems. Chapter18 provides some guidelines on
choosing which DAKOTA optimization algorithm is best matched to your specific optimization problem.

1.4.2 Nonlinear Least Squares for Parameter Estimation

Specialized least squares solution algorithms can exploit the structure of a sum of the squares objective function
for problems of the form:

minimize: f(x) =
n∑
i=1

[Ti(x)]2

x ∈ <n

subject to: gL ≤ g(x) ≤ gU
h(x) = ht (1.2)

aL ≤ Aix ≤ aU
Aex = at
xL ≤ x ≤ xU

wheref(x) is the objective function to be minimized andTi(x) is the ith least squares term. The bound, linear,
and nonlinear constraints are the same as described previously for (1.1). Specialized least squares algorithms are
generally based on the Gauss-Newton approximation. When differentiatingf(x) twice, terms ofTi(x)T ′′i (x) and
[T ′i (x)]2 result. By assuming that the former term tends toward zero near the solution sinceTi(x) tends toward
zero, then the Hessian matrix of second derivatives off(x) can be approximated using only first derivatives of
Ti(x). As a result, Gauss-Newton algorithms exhibit quadratic convergence rates near the solution for those
cases when the Hessian approximation is accurate, i.e. the residuals tend towards zero at the solution. Thus, by
exploiting the structure of the problem, the second order convergence characteristics of a full Newton algorithm
can be obtained using only first order information from the least squares terms.

A common example forTi(x) might be the difference between experimental data and model predictions for a
response quantity at a particular location and/or time step, i.e.:

Ti(x) = Ri(x)−Ri (1.3)

whereRi(x) is the response quantity predicted by the model andRi is the corresponding experimental data. In
this case,x would have the meaning of model parameters which are not precisely known and are being calibrated
to match available data. This class of problem is known by the terms parameter estimation, system identification,
model calibration, test/analysis reconciliation, etc.

1.4.3 Sensitivity Analysis and Parameter Studies

In many engineering design applications, sensitivity analysis techniques and parameter study methods are useful in
identifying which of the design parameters have the most influence on the response quantities. This information is

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

18 CHAPTER 1. INTRODUCTION

helpful prior to an optimization study as it can be used to remove design parameters that do not strongly influence
the responses. In addition, these techniques can provide assessments as to the behavior of the response functions
(smooth or nonsmooth, unimodal or multimodal) which can be invaluable in algorithm selection for optimization,
uncertainty quantification, and related methods. In a post-optimization role, sensitivity information is useful is
determining whether or not the response functions are robust with respect to small changes in the optimum design
point.

In some instances, the term sensitivity analysis is used in a local sense to denote the computation of response
derivatives at a point. These derivatives are then used in a simple analysis to make design decisions. DAKOTA
supports this type of study through numerical finite-differencing or retrieval of analytic gradients computed within
the analysis code. The desired gradient data is specified in the responses section of the DAKOTA input file and
the collection of this data at a single point is accomplished through a parameter study method with no steps.
This approach to sensitivity analysis should be distinguished from the activity of augmenting analysis codes to
internally compute derivatives using techniques such as direct or adjoint differentiation, automatic differentiation
(e.g., ADIFOR), or complex step modifications. These sensitivity augmentation activities are completely sepa-
rate from DAKOTA and are outside the scope of this manual. However, once completed, DAKOTA can utilize
these analytic gradients to perform optimization, uncertainty quantification, and related studies more reliably and
efficiently.

In other instances, the term sensitivity analysis is used in a more global sense to denote the investigation of
variability in the response functions. DAKOTA supports this type of study through computation of response data
sets (typically function values only, but all data sets are supported) at a series of points in the parameter space.
The series of points is defined using either a vector, list, centered, or multidimensional parameter study method.
For example, a set of closely-spaced points in a vector parameter study could be used to assess the smoothness of
the response functions in order to select a finite difference step size, and a set of more widely-spaced points in a
centered or multidimensional parameter study could be used to determine whether the response function variation
is likely to be unimodal or multimodal. See Chapter4 for additional information on these methods. These more
global approaches to sensitivity analysis can be used to obtain trend data even in situations when gradients are
unavailable or unreliable, and they are conceptually similar to the design of experiments methods and sampling
approaches to uncertainty quantification described in the following sections.

1.4.4 Design of Experiments

Classical design of experiments (DoE) methods and the more modern design and analysis of computer experi-
ments (DACE) methods are both techniques which seek to extract as much trend data from a parameter space as
possible using a limited number of sample points. Classical DoE techniques arose from technical disciplines that
assumed some randomness and nonrepeatability in field experiments (e.g., agricultural yield, experimental chem-
istry). DoE approaches such as central composite design, Box-Behnken design, and full and fractional factorial
design generally put sample points at the extremes of the parameter space, since these designs offer more reliable
trend extraction in the presence of nonrepeatability. DACE methods are distinguished from DoE methods in that
the nonrepeatability component can be omitted since computer simulations are involved. In these cases, space
filling designs such as orthogonal array sampling and latin hypercube sampling are more commonly employed in
order to accurately extract trend information. Quasi-Monte Carlo sampling techniques which are constructed to
fill the unit hypercube with good uniformity of coverage can also be used for DACE.

DAKOTA supports both DoE and DACE techniques. In common usage, only parameter bounds are used in
selecting the samples within the parameter space. Thus, DoE and DACE can be viewed as special cases of the more
general probabilistic sampling for uncertainty quantification (see following section), in which the DoE/DACE
parameters are treated as having uniform probability distributions. The DoE/DACE techniques are commonly
used for investigation of global response trends, identification of significant parameters (e.g., main effects), and

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

1.5. USING THIS MANUAL 19

as data generation methods for building response surface approximations.

1.4.5 Uncertainty Quantification

Uncertainty quantification (UQ) is related to sensitivity analysis in that the common goal is to gain an understand-
ing of how variations in the parameters affect the response functions of the engineering design problem. However,
for uncertainty quantification, some or all of the components of the parameter vector,x, are considered to be un-
certain and not precisely known. The uncertain parameter values are specified by a probability distribution (e.g.,
normal/Gaussian) rather than a unique value.

The impact on the response functions due to the probabilistic nature of the parameters is often estimated using
a sampling-based approach such as Monte Carlo sampling or one of its variants (latin hypercube, quasi-Monte
Carlo, Markov-chain Monte Carlo, etc.). In these sampling approaches, a random number generator is used to
select different values of the parameters with probability specified by their probability distributions. This is the
point that distinguishes UQ sampling from DoE/DACE sampling, in that the former supports general probabilistic
descriptions of the parameter set and the latter generally supports only a bounded parameter space description.
A particular set of parameter values is often called asample point, or simply asample. With Latin Hypercube
sampling, the user may specify correlations amongst the input sample points. After a user-selected number of
sample points has been generated, the response functions for each sample are evaluated. Then, a statistical analysis
is performed on the response function values to yield information on their characteristics. While this approach is
straightforward, and readily amenable to parallel computing, it can be computationally expensive depending on
the accuracy requirements of the statistical information (which links directly to the number of sample points).

When sampling methods are too expensive to apply, various analytic and quasi-analytic reliability methods can
be applied to UQ problems. These include Mean Value (MV), Advanced Mean Value (AMV), iterated Advanced
Mean Value (AMV+), and two-point adaptive nonlinearity approximation (TANA) algorithms, along with tra-
ditional first-order and second-order reliability methods (FORM and SORM) [56]. These techniques all solve
internal optimization problems in order to locate the most probable point (MPP) of failure. The MPP is then used
as the point about which approximate probabilities are integrated.

In addition, stochastic finite element (SFE) approaches using polynomial chaos expansions are also available for
characterizing the response of systems whose governing equations involve stochastic coefficients. The sampling,
analytic reliability, and SFE approaches are described in more detail in Chapter6.

1.5 Using this Manual

The previous sections in this chapter have provided a brief overview of the capabilities in DAKOTA, and have
introduced some of the common terms that are used in the fields of optimization, parameter estimation, sensitivity
analysis, design of experiments, and uncertainty quantification. The DAKOTA user that is new to these techniques
is advised to consult the references cited earlier in this chapter to obtain more detailed descriptions of methods
and algorithms in these disciplines.

Chapter2 provides information on how to obtain, install, and use DAKOTA. In addition, example problems are
presented in this chapter to demonstrate some of DAKOTA’s capabilities for parameter studies, optimization, and
UQ. Chapter3 provides a brief overview of all of the different software packages and capabilities in DAKOTA.
Chapter4 through Chapter8 provide details on the iterative algorithms supported in DAKOTA, and Chapter9
describes DAKOTA’s advanced optimization strategies. Chapter10 through Chapter13 provide information on
model components which are involved in parameter to response mappings and Chapters14 and15 describe the
inputs to and outputs from DAKOTA. Chapter16provides information on interfacing DAKOTA with engineering

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

20 CHAPTER 1. INTRODUCTION

simulation codes, Chapter17 covers DAKOTA’s parallel computing capabilities, and Chapter18 provides some
usage guidelines for selecting DAKOTA algorithms. Finally, Chapter19 through Chapter21 describe restart
utilities, failure capturing facilities, and additional test problems, respectively.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 2

Getting Started with DAKOTA

2.1 Installation Guide

DAKOTA can be compiled for most common computer systems that run Unix and Linux operating systems. The
computers and operating systems actively supported by the DAKOTA project include:

• Sun Solaris 2.10

• SGI IRIX 6.5

• Compaq/DEC OSF 5.1

• IBM AIX 5.2

• Intel/AMD Redhat Enterprise Linux 4 Update 2 (RHEL4U2)

In addition, partial support is provided for PC Windows (via Cygwin), Mac OSX, and HP HPUX. Additional
details are provided in the file/Dakota/README in the distribution (see the following section for download
instructions).

For answers to common questions and solutions to common problems in downloading, building, installing, or run-
ning DAKOTA, refer tohttp://www.cs.sandia.gov/DAKOTA/faq.html for additional information.

2.1.1 How to Obtain DAKOTA - External to Sandia Labs

If you are outside of Sandia National Laboratories, the DAKOTA binary executable files and source code files are
available through the download link available from the following web site:

http://www.cs.sandia.gov/DAKOTA/software.html

To receive the binary or source code files, you are asked to fill out a short online registration form. This information
will be used by the DAKOTA development team to collect software usage metrics and, if desired, to register you
for update announcements.

If you are a new DAKOTA user and are using one of the supported platforms, we suggest that you download
one of the binary executable distributions rather than the source code distribution. The compilation process can

http://www.cs.sandia.gov/DAKOTA/faq.html
http://www.cs.sandia.gov/DAKOTA/software.html

22 CHAPTER 2. GETTING STARTED WITH DAKOTA

be somewhat involved, and it will be easier for you to first gain an understanding of DAKOTA by running the
example problems that are provided with one of the binary distributions. For more experienced users, DAKOTA
can be customized with additional packages and ported to additional computer platforms when building from the
source code.

2.1.2 How to Obtain DAKOTA - Internal to Sandia Labs

DAKOTA binary executable files have been compiled and distributed to the ESHPC LAN and common com-
pute servers at Sandia, Los Alamos, and Lawrence Livermore. Common locations for the executable include
/usr/local/bin/dakota and/projects/dakota/bin/<system>/dakota , where “<system> ”
is osf , irix , or other. To see if DAKOTA is available on your computer system and accessible in your Unix
environment path settings, type the commandwhich dakota at the Unix prompt. If the DAKOTA executable
file is in your path, its location will be echoed to the terminal. If the DAKOTA executable file is available on your
system but not in your path, then you will need to locate it and add its directory to your path (the Unixwhereis
andfind commands can be useful for locating the executable).

If DAKOTA is not available on your system, the current preferred options are to either get an account on one of the
common compute servers where DAKOTA is maintained, or if this is not practical, contact one of the DAKOTA
team members so that we can provide you with DAKOTA executable files that are as complete as possible (i.e.,
that include Sandia-specific and site-licensed software that is not yet publicly available). Alternatively, you can
follow the instructions given in the previous section to obtain the public version of the DAKOTA binary and/or
source codes files. In the future, a download facility on Sandia’s internal restricted network may be added to
simplify internal distributions.

2.1.3 Installing DAKOTA - Binary Executable Files

Once you have downloaded a binary distribution from the web site listed above, you will have a Unix tar file that
has a name similar toDakota 4 x.OSversion.tar.gz .

Use the Unix utilitygunzip to uncompress the tar file and the Unixtar utility to extract the files from the
archive by executing the following commands:

gunzip Dakota_4_x.OSversion.tar.gz
tar -xvf Dakota_4_x.OSversion.tar

The tar utility will create a subdirectory named/Dakota in which the DAKOTA executables and example files
will be stored. The executables are in/Dakota/bin , and the example problems are in/Dakota/GettingStarted/Examples
and in/Dakota/test .

2.1.4 Installing DAKOTA - Source Code Files

The installation process for the DAKOTA source code files can be more involved than the installation process for
the binary files. When possible, we recommend installing the binary files instead of compiling the source files.
However, following the download, uncompression, and extraction of the fileDakota 4 x.src.tar.gz , the
basic steps follow the standard GNU distribution process of:

configure
make

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.1. INSTALLATION GUIDE 23

to construct Makefiles and build the system, respectively. Additionally, one can

make check
make install

to exercise regression and unit tests using the new executable and install the executable in a desired location,
respectively. Detailed instructions for building DAKOTA are given in the file/Dakota/INSTALL .

2.1.5 Running DAKOTA

The DAKOTA executable file is named dakota. If this command is entered at the Unix prompt without any
arguments, the following usage message is returned to the user:

usage: dakota [options and <args>]
-help (Print this summary)
-version (Print DAKOTA version number)
-check (Perform input checks)
-input <$val> (REQUIRED DAKOTA input file $val)
-output <$val> (Redirect DAKOTA standard output to file $val)
-error <$val> (Redirect DAKOTA standard error to file $val)
-read_restart <$val> (Read an existing DAKOTA restart file $val)
-stop_restart <$val> (Stop restart file processing at evaluation $val)
-write_restart <$val> (Write a new DAKOTA restart file $val)

Of these available command line inputs, only the “-input ” option is required; all others are optional. The
“ -help ” option prints the usage message above. The “-version ” option prints the version number of the
executable. The “-check ” option invokes a dry-run mode in which the input file is processed and checked for
errors, but the study is not performed. The “-input ” option provides the name of the DAKOTA input file. The
“ -output ” and “-error ” options provide file names for redirection of the DAKOTA standard output (stdout)
and standard error (stderr), respectively. The “-read restart ” and “-write restart ” command line
inputs provide the names of restart databases to read from and write to, respectively. The “-stop restart ”
command line input limits the number of function evaluations read from the restart database (the default is all
the evaluations) for those cases in which some evaluations were erroneous or corrupted. Restart management
is an important technique for retaining data from expensive engineering applications. This is an advanced topic
that is discussed in detail in Chapter18. Note that these command line inputs can be abbreviated so long as
the abbreviation is unique (the current set of command line options do not have any possibility for abbreviation
ambiguity). That is, “-h ”, “ -v ”, “ -i ”, “ -o ”, “ -e ”, “ -r ”, “ -s ”, and “-w ” are commonly used in place of the
longer forms of the command line inputs.

To run DAKOTA with a particular input file, the following syntax can be used:

dakota -i dakota.in

This will echo the standard output (stdout) and standard error (stderr) messages to the terminal. To redirect stdout
and stderr to separate files, the-o and-e command line options may be used:

dakota -i dakota.in -o dakota.out -e dakota.err

Alternatively, any of a variety of Unix redirection variants can be used. The simplest of these redirects stdout to
another file:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

24 CHAPTER 2. GETTING STARTED WITH DAKOTA

dakota -i dakota.in > dakota.out

To append to a file rather than overwrite it, “>>” is used in place of “>”. To redirect stderr as well as stdout, a “&”
is appended with no embedded space, i.e. “>&” or “ >>&” is used. To override the noclobber environment variable
(if set) in order to allow overwriting of an existing output file or appending of a file that does not yet exist, a “! ”
is appended with no embedded space, i.e. “>! ”, “ >&! ”, “ >>! ”, or “>>&! ” is used.

To run the dakota process in the background, append an ampersand symbol (&) to the command with an embedded
space, e.g.:

dakota -i dakota.in > dakota.out &

Refer to [3] for more information on Unix redirection and background commands.

2.2 Rosenbrock and Textbook Test Problems

Many of the example problems in this chapter use the Rosenbrock function [47], which has the form:

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)2 (2.1)

A three-dimensional plot of this function is shown in Figure2.1(a), where bothx1 andx2 range in value from -2
to 2. Figure2.1(b) shows a contour plot for Rosenbrock’s function. An optimization problem using Rosenbrock’s
function is formulated as follows:

minimize f(x1, x2)
x ∈ <2

subject to −2 ≤ x1 ≤ 2 (2.2)

−2 ≤ x2 ≤ 2

Note that there are no linear or nonlinear constraints in this formulation, so this is a bound constrained optimization
problem. The unique solution to this problem lies at the point(x1, x2) = (1, 1) where the function value is zero.

The two-variable version of the “textbook” example problem provides a nonlinearly constrained optimization test
case. It is formulated as:

minimize f = (x1 − 1)4 + (x2 − 1)4

subject to g1 = x2
1 −

x2

2
≤ 0

g2 = x2
2 −

x1

2
≤ 0 (2.3)

0.5 ≤ x1 ≤ 5.8
−2.9 ≤ x2 ≤ 2.9

Contours of this example problem are illustrated in Figure2.2(a), with a close-up view of the feasible region given
in Figure2.2(b).

For the textbook example problem, the unconstrained minimum occurs at(x1, x2) = (1, 1). However, the inclu-
sion of the constraints moves the minimum to(x1, x2) = (0.5, 0.5).

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.2. ROSENBROCK AND TEXTBOOK TEST PROBLEMS 25

(a) (b)

Figure 2.1: Rosenbrock’s function: (a) 3-D plot and (b) contours withx1 on the bottom axis.

(a) (b)

Figure 2.2: Contours of the textbook problem (a) on the[−3, 4] × [−3, 4] domain and (b) zoomed into an area
containing the constrained optimum point(x1, x2) = (0.5, 0.5). The feasible region lies at the intersection of the
two constraintsg1 (solid) andg2 (dashed).

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

26 CHAPTER 2. GETTING STARTED WITH DAKOTA

Several other example problems are available. See Chapter21for a description of these example problems as well
as further discussion of the Rosenbrock and textbook example problems.

2.3 DAKOTA Input File Format

All of the DAKOTA input files for the simple example problems presented here are included in the distribution tar
files within the directory/Dakota/GettingStarted/Examples . A simple DAKOTA input file for a two-
dimensional parameter study on Rosenbrock’s function is shown in Figure2.3(filename:dakota rosenbrock 2d.in).
This input file will be used to describe the basic format and syntax used in all DAKOTA input files.

strategy, \
single_method \

tabular_graphics_data

method, \
multidim_parameter_study \

partitions = 8 8 \

model, \
single

variables, \
continuous_design = 2 \

cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors ’x1’ ’x2’ \

interface, \
fork asynch \

direct \
analysis_driver = ’rosenbrock’ \

responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

Figure 2.3: Rosenbrock 2-D parameter study example: the DAKOTA input file.

There are six specification blocks that may appear in DAKOTA input files. These are identified in the input
file using the following keywords: variables, interface, responses, model, method, and strategy. These keyword
blocks can appear in any order in a DAKOTA input file. At least onevariables, interface, responses, andmethod
specification must appear, and no more than onestrategyspecification should appear. In Figure2.3, one of each
of the keyword blocks is used. Additional syntax features include the use of the backslash symbol (\) to escape
the newline character in order to split a keyword onto multiple lines for readability, use of the # symbol to indicate
a comment, use of single quotes for string inputs (e.g., ‘x1’), the use of commas and/or white space for separation
of specifications, and the use of “=” symbols to optionally enhance the association of supplied data. See the
DAKOTA Reference Manual [29] for additional details on this input file syntax.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.3. DAKOTA INPUT FILE FORMAT 27

The variablessection of the input file specifies the characteristics of the parameters that will be used in the
problem formulation. The variables can be continuous or discrete, and can be classified as design variables,
uncertain variables, or state variables. See Chapter11 for more information on the types of variables supported
by DAKOTA. Thevariablessection shown in Figure2.3specifies that there are two continuous design variables.
The sub-specifications for continuous design variables use the abbreviation cdv in the input file and include the
descriptors “x1” and “x2” as well as lower and upper bounds for these variables. The information about the
variables is organized in column format for readability. So, both variablesx1 andx2 have a lower bound of -2.0
and an upper bound of 2.0.

Theinterfacesection of the input file specifies what approach will be used to map variables into responses as well
as details on how DAKOTA will pass data to and from a simulation code. In this example, a test function internal
to DAKOTA is used, but the data may also be obtained from a simulation code that is external to DAKOTA.
The keyworddirect indicates the use of a function linked directly into DAKOTA. Theanalysis driver
keyword indicates the name of the test function. This is all that is needed since files will not be used to pass data
between DAKOTA and the simulation code.

Theresponsessection of the input file specifies the types of data that the interface will return to DAKOTA. For the
example shown in Figure2.3, there is only one objective function, as indicated by the keywordnum objective functions
= 1. Since there are no constraints associated with Rosenbrock’s function, the keywords associated with con-
straint specifications are omitted. The keywordsno gradients andno hessians indicate that gradient and
Hessian data are not needed.

Themethodsection of the input file specifies the iterative technique that DAKOTA will employ, such as a parame-
ter study, optimization method, data sampling technique, etc. In Figure2.3, the keywordmultidim parameter study
specifies a multidimensional parameter study, while the keyword partitions denotes the number of intervals per
variable. In this case, there will be eight intervals (nine data points) evaluated between the lower and upper
bounds of both variables (bounds provided previously in thevariablessection), for a total of 81 response function
evaluations.

Themodelsection of the input file specifies the model that DAKOTA will use. A model refers to a collection of
responses, variables, and an interface. A model provides the logical unit for determining how a set of variables
is mapped into a set of responses in support of an iterative method. The model allows one to specify a single
interface, or to manage multiple interfaces through surrogates and model hierarchies or nested iteration. In many
cases, one might want to use an approximate model for optimization or uncertainty quantification, due to the
lower computational cost. Themodel keyword allows one to specify if the iterator will be operating on a data
fit surrogate (such as a polynomial regression, neural net, etc.), a hierarchical surrogate (which uses the corrected
results of a lower fidelity simulation model as an approximation to a higher fidelity simulation), or a nested model.
See Chapter10for more details on global and local approximations and model specification details. If one is using
a model with no approximations or nesting, then it is not necessary to specify themodel keyword: the default
behavior is that DAKOTA constructs a model with the last set of responses, variables, and interface specified. In
Figure2.3, the keywordsingle specifies that a single model will be used in this parameter study.

The final section of the input file shown in Figure2.3is thestrategysection. This keyword section is used to spec-
ify some of DAKOTA’s advanced meta-procedures such as multi-level optimization, surrogate-based optimization,
multi-start optimization, and Pareto optimization. See Chapter9 for more information on these meta-procedures.
Thestrategysection also contains the settings for DAKOTA’s graphical output (via thegraphics flag) and the
tabular data output (via thetabular graphics data keyword).

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

28 CHAPTER 2. GETTING STARTED WITH DAKOTA

2.4 Example Problems

2.4.1 Two-Dimensional Parameter Study

The 2-D parameter study example problem listed in Figure2.3 is executed by DAKOTA using the following
command:

dakota -i dakota_rosenbrock_2d.in > 2d.out

The output of the DAKOTA run is directed to the file named2d.out . For comparison, a file named2d.out.sav
is included in the/Dakota/GettingStarted/Examples directory. As for many of the examples, DAKOTA
provides a report on the best design point located during the study at the end of these output files.

This 2-D parameter study produces the grid of data samples shown in Figure2.4. Note that thegraphics flag
in thestrategysection of the input file has been commented out since, for this example, the iteration history plots
created by DAKOTA are not particularly instructive. More interesting visualizations can be created by importing
DAKOTA’s tabular data into an external graphics/plotting package. Common graphics and plotting packages
include Mathematica, Matlab, Microsoft Excel, Origin, Tecplot, and many others (Sandia National Laboratories
and the DAKOTA developers do not endorse any of these commercial products).

Figure 2.4: Rosenbrock 2-D parameter study example: location of the design points (dots) evaluated.

2.4.2 Vector Parameter Study

In addition to the multidimensional parameter study, DAKOTA can perform a vector parameter study, i.e., a
parameter study between any two design points in ann-dimensional parameter space.

An input file for the vector parameter study is shown in Figure2.5. The primary differences between this input
file and the previous input file are found in thevariablesand methodsections. In the variables section, the
keywords for the bounds are removed and replaced with the keywordcdv initial point that specifies the
starting point for the parameter study. In the method section, thevector parameter study keyword is used.
Thefinal point keyword indicates the stopping point for the parameter study, andnum steps specifies the
number of steps taken between the initial and final points in the parameter study.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.4. EXAMPLE PROBLEMS 29

strategy, \
single_method \

tabular_graphics_data

method, \
vector_parameter_study \

final_point = 1.1 1.3 \
num_steps = 10 \

model, \
single

variables, \
continuous_design = 2 \

cdv_initial_point -0.3 0.2 \
cdv_descriptors ’x1’ ’x2’ \

interface, \
fork asynch \

direct \
analysis_driver = ’rosenbrock’ \

responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

Figure 2.5: Rosenbrock vector parameter study example: the DAKOTA input file.

The vector parameter study example problem is executed using the command

dakota -i dakota_rosenbrock_vector.in > vector.out

Figure2.6(a) shows the graphics output created by DAKOTA. For this study, the simple DAKOTA graphics are
more useful for visualizing the results. Figure2.6(b) shows the locations of the 11 sample points generated in this
study. It is evident from these figures that the parameter study starts within the banana-shaped valley, marches
up the side of the hill, and then returns to the valley. The output filevector.out.sav is provided in the
/Dakota/GettingStarted/Examples directory.

In addition to the vector and multidimensional examples shown, DAKOTA also supports list and centered param-
eter study methods. Refer to Chapter4 for additional information.

2.4.3 Gradient-based Unconstrained Optimization

A DAKOTA input file for a gradient-based optimization of Rosenbrock’s function is listed in Figure2.7. The
format of the input file is similar to that used for the parameter studies, but there are some new keywords in
the responses and method sections. First, in the responses section of the input file, the keyword block start-
ing with numerical gradients specifies that a finite difference method will be used to compute gradients

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

30 CHAPTER 2. GETTING STARTED WITH DAKOTA

(a)

(b)

Figure 2.6: Rosenbrock vector parameter study example: (a) screen capture of the DAKOTA graphics and (b)
location of the design points (dots) evaluated.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.4. EXAMPLE PROBLEMS 31

strategy, \
single_method \

tabular_graphics_data

method, \
conmin_frcg \

max_iterations = 100 \
convergence_tolerance = 1e-4 \

model, \
single

variables, \
continuous_design = 2 \

cdv_initial_point -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors ’x1’ ’x2’ \

interface, \
fork asynch \

direct \
analysis_driver = ’rosenbrock’ \

responses, \
num_objective_functions = 1 \
numerical_gradients \

method_source dakota \
interval_type forward \
fd_gradient_step_size = 1.e-5 \

no_hessians

Figure 2.7: Rosenbrock gradient-based unconstrained optimization example: the DAKOTA input file.

for the optimization algorithm. Note that the Rosenbrock function evaluation code inside DAKOTA has the
capability to give analytical gradient values. To switch from finite difference gradient estimates to analytic gra-
dients, uncomment theanalytic gradients keyword and comment out the four lines associated with the
numerical gradients specification. Next, in the method section of the input file, several new keywords
have been added. In this section, the keywordconmin frcg indicates the use of the Fletcher-Reeves conjugate
gradient algorithm in the CONMIN optimization software package [99] for bound-constrained optimization. The
keywordmax iterations is used to indicate the computational budget for this optimization (in this case, a
single iteration includes multiple evaluations of Rosenbrock’s function for the gradient computation steps and the
line search steps). The keywordconvergence tolerance is used to specify one of CONMIN’s convergence
criteria (here, CONMIN terminates if the objective function value differs by less than the absolute value of the
convergence tolerance for three successive iterations). And, finally, theoutput verbosity is set toquiet .

This DAKOTA input file is executed using the following command:

dakota -i dakota_rosenbrock_grad_opt.in > grad_opt.out

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

32 CHAPTER 2. GETTING STARTED WITH DAKOTA

The sample filegrad opt.out.sav is included in/Dakota/GettingStarted/Examples for compar-
ison. When this example problem is executed, DAKOTA creates some iteration history graphics similar to the
screen capture shown in Figure2.8(a). These plots show how the objective function and design parameters
change in value during the optimization steps. The scaling of the horizontal and vertical axes can be changed by
moving the scroll knobs on each plot. Also, the “Options” button allows the user to plot the vertical axes using a
logarithmic scale. Note that log-scaling is only allowed if the values on the vertical axis are strictly greater than
zero.

(a)

(b)

Figure 2.8: Rosenbrock gradient-based unconstrained optimization example: (a) screen capture of the DAKOTA
graphics and (b) sequence of design points (dots) evaluated (line search points omitted).

Figure 2.8(b) shows the iteration history of the optimization algorithm. The optimization starts at the point
(x1, x2) = (−1.2, 1.0) as given in the DAKOTA input file. Subsequent iterations follow the banana-shaped
valley that curves around toward the minimum point at(x1, x2) = (1.0, 1.0). Note that the function evaluations
associated with the line search phase of each CONMIN iteration are not shown on the plot. At the end of the
DAKOTA run, information is written to the output file to provide data on the optimal design point. This data
includes the optimum design point parameter values, the optimum objective and constraint function values (if any),
plus the number of function evaluations that occurred and the amount of time that elapsed during the optimization

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.4. EXAMPLE PROBLEMS 33

study.

2.4.4 Gradient-based Constrained Optimization

This example demonstrates the use of a gradient-based optimization algorithm on a nonlinearly constrained prob-
lem. The “textbook” example problem (see Section2.2) is used for this purpose and the DAKOTA input file
for this example problem is shown in Figure2.9. This input file is similar to the input file for the unconstrained
gradient-based optimization example problem involving the Rosenbrock function. Note the addition of commands
in the responses section of the input file that identify the number and type of constraints, along with the upper
bounds on these constraints. The commandsdirect andanalysis driver = ’text book’ specify that
DAKOTA will execute its internal version of the textbook problem.

strategy, \
single_method

method, \
dot_mmfd, \

max_iterations = 50, \
convergence_tolerance = 1e-4

variables, \
continuous_design = 2 \

cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor ’x1’ ’x2’

interface, \
fork \

analysis_driver = ’text_book’ \

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
numerical_gradients \

method_source dakota \
interval_type central \
fd_gradient_step_size = 1.e-4 \

no_hessians

Figure 2.9: Textbook gradient-based constrained optimization example: the DAKOTA input file.

This example problem is executed by using the following command:

dakota -i dakota_textbook.in > textbook.out

The filetextbook.out.sav is included in/Dakota/GettingStarted/Examples for comparison pur-
poses. The results of the optimization example problem are listed at the end of thetextbook.out file. This

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

34 CHAPTER 2. GETTING STARTED WITH DAKOTA

information shows that the optimizer stopped at the point(x1, x2) = (0.5, 0.5), where both constraints are sat-
isfied, and where the objective function value is0.125. This progress of the optimization algorithm is shown in
Figure2.10(a) where the dots correspond to the end point of each iteration in the algorithm. The starting point is
(x1, x2) = (4.0, 0.0) where constraintg1 is violated and constraintg2 is satisfied. The optimizer takes a sequence
of steps to minimize the objective function while reducing the infeasibility ofg1 and retaining the feasibility of
g2. The optimization graphics are also shown in Figure2.10(b).

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.4. EXAMPLE PROBLEMS 35

(a)

(b)

Figure 2.10: Textbook gradient-based constrained optimization example: (a) screen capture of the DAKOTA
graphics shows how the objective function was reduced during the search for a feasible design point and (b)
iteration history (iterations marked by solid dots).

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

36 CHAPTER 2. GETTING STARTED WITH DAKOTA

2.4.5 Nonlinear Least Squares Methods for Optimization

Both the Rosenbrock and textbook example problems can be formulated as least squares minimization problems
(see Section21.1and Section21.2). For example, the Rosenbrock problem can be cast as:

minimize (f1)2 + (f2)2 (2.4)

wheref1 = 10(x2 − x2
1) andf2 = (1 − x1). When using a least squares approach to minimize a function,

each of the least squares termsf1, f2, . . . is driven to zero. This formulation permits the use of specialized
algorithms that can be more efficient than general purpose optimization algorithms. See Chapter8 for more detail
on the algorithms used for least squares minimization, as well as a discussion on the types of engineering design
problems (e.g., parameter estimation) that can make use of the least squares approach.

Figure 2.11 is a listing of the DAKOTA input filedakota rosenbrock ls.in . This input file differs
from the input file shown in Figure2.7 in several key areas. The responses section of the input file uses the
keywordnum least squares terms = 2 instead of thenum objective functions = 1 . The key-
words in the interface section show that the Unix system call method is used to run the C++ analysis code named
rosenbrock . The method section of the input file shows that the Gauss-Newton algorithm from the OPT++ li-
brary [73] (optpp g newton) is used in this example. For DAKOTA Version 4.0, the Gauss-Newton, NL2SOL,
and NLSSOL SQP algorithms are available for exploiting the special mathematical structure of least squares min-
imization problems.

The input file listed in Figure2.11is executed using the command:

dakota -i dakota_rosenbrock_ls.in > leastsquares.out

The file leastsquares.out.sav is included/Dakota/GettingStarted/Examples for comparison
purposes. The optimization results at the end of this file show that the least squares minimization approach has
found the same optimum design point,(x1, x2) = (1.0, 1.0), as was found using the conventional gradient-
based optimization approach. The iteration history of the least squares minimization is given in Figure2.12,
and shows that nearly 30 function evaluations were needed for convergence. In this example the least squares
approach required about the same number of function evaluations as did conventional gradient-based optimization.
However, in many cases the least squares algorithm will converge more rapidly in the vicinity of the solution.

2.4.6 Nongradient-based Optimization via Pattern Search

In addition to gradient-based optimization algorithms, DAKOTA also contains a variety of nongradient-based
algorithms. One particular nongradient-based algorithm for local optimization is known as pattern search (see
Chapter1 for a discussion of local versus global optimization). The DAKOTA input file shown in Figure2.13
applies a pattern search method to minimize the Rosenbrock function. While this provides for an interesting com-
parison to the previous example problems in this chapter, the Rosenbrock function is not the best test case for a
pattern search method. That is, pattern search methods are better suited to problems where the gradients are too
expensive to evaluate, inaccurate, or nonexistent; situations common among many engineering optimization prob-
lems. It also should be noted that nongradient-based algorithms generally are applicable only to unconstrained
or bound-constrained optimization problems, although the inclusion of general linear and nonlinear constraints in
nongradient-based algorithms is an active area of research in the optimization community. For most users who
wish to use nongradient-based algorithms on constrained optimization problems, the easiest route is to create a
penalty function, i.e., a composite function that contains the objective function and the constraints, external to
DAKOTA and then optimize on this penalty function. Most optimization textbooks will provide guidance on
selecting and using penalty functions.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.4. EXAMPLE PROBLEMS 37

strategy, \
single_method \

tabular_graphics_data

method, \
optpp_g_newton \

max_iterations = 100 \
convergence_tolerance = 1e-4 \

model, \
single

variables, \
continuous_design = 2 \

cdv_initial_point -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors ’x1’ ’x2’ \

interface, \
fork asynch \

direct \
analysis_driver = ’rosenbrock’ \

responses, \
num_least_squares_terms = 2 \
analytic_gradients \
no_hessians

Figure 2.11: Rosenbrock nonlinear least squares example: the DAKOTA input file.

This DAKOTA input file shown in Figure2.13 is similar to the input file for the gradient-based optimization,
except it has a different set of keywords in the method section of the input file, and the gradient specification in
the responses section has been changed tono gradients . The pattern search optimization algorithm used is
part of the COLINY library [57]. See the DAKOTA Reference Manual [29] for more information on themethods
section commands that can be used with COLINY algorithms.

This DAKOTA input file is executed using the following command:

dakota -i dakota_rosenbrock_ps_opt.in > ps_opt.out

The fileps opt.out.sav is included in the/Dakota/GettingStarted/Examples directory. For this
run, the optimizer was given an initial design point of(x1, x2) = (0.0, 0.0) and was limited to 2000 function
evaluations. In this case, the pattern search algorithm stopped short of the optimum at(x1, x2) = (1.0, 1, 0),
although it was making progress in that direction when it was terminated (eventually, it would have reached the
minimum point).

The iteration history is provided in Figure2.14(b) which shows the locations of the function evaluations used in
the pattern search algorithm. Figure2.14(c) provides a close-up view of the pattern search function evaluations
used at the start of the algorithm. The coordinate pattern is clearly visible at the start of the iteration history, and

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

38 CHAPTER 2. GETTING STARTED WITH DAKOTA

Figure 2.12: Rosenbrock nonlinear least squares example: iteration history for least squares termsf1 andf2.

the decreasing size of the coordinate pattern is evident at the design points move toward(x1, x2) = (1.0, 1.0).

While pattern search algorithms are useful in many optimization problems, this example shows some of the
drawbacks to this algorithm. While a pattern search method may make good initial progress towards an optimum,
it is often slow to converge. On a smooth, differentiable function such as Rosenbrock’s function, a nongradient-
based method will not be as efficient as a gradient-based method. However, there are many engineering design
applications where gradient information is inaccurate or unavailable, which renders gradient-based optimizers
ineffective. Thus, pattern search algorithms (and other nongradient-based algorithms such as genetic algorithms
as discussed in the next section) are often good choices in complex engineering applications when the quality of
gradient data is suspect.

2.4.7 Nongradient-based Optimization via Evolutionary Algorithm

In contrast to pattern search algorithms, which are local optimization methods, evolutionary algorithms (EA) are
global optimization methods. As was described above for the pattern search algorithm, the Rosenbrock function
is not an ideal test problem for showcasing the capabilities of evolutionary algorithms. Rather, EAs are best suited
to optimization problems that have multiple local optima, and where gradients are either too expensive to compute
or do not exist.

Evolutionary algorithms are based on Darwin’s theory of survival of the fittest. The EA algorithm starts with a
randomly selected population of design points in the parameter space, where the values of the design parameters
form a “genetic string,” which is analogous to DNA in a biological system, that uniquely represents each design

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.4. EXAMPLE PROBLEMS 39

strategy, \
single_method \

tabular_graphics_data

method, \
coliny_pattern_search \

max_iterations = 1000 \
max_function_evaluations = 2000 \
solution_accuracy = 1e-4 \
initial_delta = 0.5 \
threshold_delta = 1e-4 \
exploratory_moves basic_pattern \
contraction_factor = 0.75 \

model, \
single

variables, \
continuous_design = 2 \

cdv_initial_point 0.0 0.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors ’x1’ ’x2’ \

interface, \
fork asynch \

direct \
analysis_driver = ’rosenbrock’ \

responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

Figure 2.13: Rosenbrock pattern search optimization example: the DAKOTA input file.

point in the population. The EA then follows a sequence of generations, where the best design points in the
population (i.e., those having low objective function values) are considered to be the most “fit” and are allowed
to survive and reproduce. The EA simulates the evolutionary process by employing the mathematical analogs
of processes such as natural selection, breeding, and mutation. Ultimately, the EA identifies a design point
(or a family of design points) that minimizes the objective function of the optimization problem. An extensive
discussion of EAs is beyond the scope of this text, but may be found in a variety of sources (cf., [55] pp. 149-
158; [52]). Currently, the EAs available in DAKOTA include a genetic algorithm for problems involving discrete
variables and an evolution strategy with self-adaptation for problems with continuous variables. Details of these
algorithms are given in the DAKOTA Reference Manual [29]. The COLINY library, which provides the EA
software that has been linked into DAKOTA, is described in Reference [57].

Figure2.15shows a DAKOTA input file that uses an EA to minimize the Rosenbrock function. For this example
the EA has a population size of 50. At the start of the first generation, a random number generator is used to

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

40 CHAPTER 2. GETTING STARTED WITH DAKOTA

(a)

(b) (c)

Figure 2.14: Rosenbrock pattern search optimization example: (a) screen capture of the DAKOTA graphics, (b)
sequence of design points (dots) evaluated and (c) close-up view illustrating the shape of the coordinate pattern
used.

select 50 design points that will comprise the initial population.[A specific seed value is used in this example to
generate repeatable results, although, in general, one should use the default setting which allows the EA to choose
a random seed.]A two-point crossover technique is used to exchange genetic string values between the members
of the population during the EA breeding process. The result of the breeding process is a population comprised
of the 10 best “parent” design points (elitist strategy) plus 40 new “child” design points. The EA optimization
process will be terminated after either 6,000 iterations (generations of the EA) or 10,000 function evaluations.
The EA software available in DAKOTA provides the user with much flexibility in choosing the settings used in
the optimization process. See [29] and [57] for details on these settings.

The input file is executed by DAKOTA using the following command:

dakota -i dakota_rosenbrock_ea_opt.in >! ea_opt.out

where the fileea opt.out.sav has been included in/Dakota/GettingStarted/Examples . The

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.4. EXAMPLE PROBLEMS 41

strategy, \
single_method \

tabular_graphics_data

method, \
coliny_ea \

max_iterations = 100 \
max_function_evaluations = 2000 \
seed = 11011011 \
population_size = 50 \
fitness_type merit_function \
mutation_type offset_normal \
mutation_rate 1.0 \
crossover_type two_point \
crossover_rate 0.0 \
replacement_type chc = 10 \

model, \
single

variables, \
continuous_design = 2 \

cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors ’x1’ ’x2’ \

interface, \
fork asynch \

direct \
analysis_driver = ’rosenbrock’ \

responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

Figure 2.15: Rosenbrock evolutionary algorithm optimization example: the DAKOTA input file.

EA optimization results printed at the end of this file show that the best design point found was(x1, x2) =
(0.96, 0.93). The file ea tabular.dat.sav provides a listing of the design parameter values and objec-
tive function values for all 10,000 design points evaluated during the running of the EA. Figure2.16(a) shows
the population of 50 randomly selected design points that comprise the first generation of the EA, and Fig-
ure 2.16(b) shows the final population of 50 design points, where most of the 50 points are clustered near
(x1, x2) = (0.96, 0.93).

As described above, an EA is not well-suited to an optimization problem involving a smooth, differentiable objec-
tive such as the Rosenbrock function. Rather, EAs are better suited to optimization problems where conventional
gradient-based optimization fails, such as situations where there are multiple local optima and/or gradients cannot
be computed. In such cases, the computational expense of an EA is warranted since other optimization methods
are not applicable or impractical. In many optimization problems, EAs often quickly identify promising regions

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

42 CHAPTER 2. GETTING STARTED WITH DAKOTA

(b) (c)

Figure 2.16: Rosenbrock evolutionary algorithm optimization example: 50 design points in the (a) initial and (b)
final populations selected by the evolutionary algorithm.

of the design space where the global minimum may be located. However, an EA can be slow to converge to
the optimum. For this reason, it can be an effective approach to combine the global search capabilities of a EA
with the efficient local search of a gradient-based algorithm in amultilevel hybrid optimizationstrategy. In this
approach, the optimization starts by using a few iterations of a EA to provide the initial search for a good region of
the parameter space (low objective function and/or feasible constraints), and then it switches to a gradient-based
algorithm (using the best design point found by the EA as its starting point) to perform an efficient local search
for an optimum design point. More information on this multilevel hybrid approach is provided in Chapter9.

In addition to the evolutionary algorithm capabilities in thecoliny ea method, there is a single-objective ge-
netic algorithm method calledsoga . For more information onsoga , see Chapter7.

2.4.8 Multiobjective Optimization

Multiobjective optimization means that there are two or more objective functions that you wish to optimize simul-
taneously. Often these are conflicting objectives, such as cost and performance. The answer to a multi-objective
problem is usually not a single point. Rather, it is a set of points called the Pareto front. Each point on the Pareto
front satisfies the Pareto optimality criterion, which is stated as follows: a feasible vectorX∗ is Pareto optimal
if there exists no other feasible vectorX which would improve some objective without causing a simultaneous
worsening in at least one other objective. Thus, if a feasible pointX ′ exists that CAN be improved on one or
more objectives without worsening of another, it is not Pareto optimal: it is said to be “dominated” and the points
along the Pareto front are said to be “non-dominated”.

Often multi-objective problems are addressed by simply assigning weights to the individual objectives, summing
the weighted objectives, and turning the problem into a single-objective one which can be solved with a variety
of optimization techniques. While this approach provides a useful “first cut” analysis (and is supported within
DAKOTA, see Section7.3), this approach has many limitations. The major limitation is that a linear weighted sum
objective will not find optimal solutions if the true Pareto front is nonconvex. Also, if one wants to understand the
effects of changing weights, this method can be computationally expensive. Since each optimization of a single
weighted objective will find only one point near or on the Pareto front, many optimizations must be performed to

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.4. EXAMPLE PROBLEMS 43

get a good parametric understanding of the influence of the weights and to achieve a good sampling of the entire
Pareto frontier.

Starting with version 3.2 of DAKOTA, a capability to perform multi-objective optimization based on a genetic
algorithm method has been provided. This method is calledmoga. It is based on the idea that as the population
evolves in a GA, solutions which are non-dominated are chosen to remain in the population. Until version 4.0 of
DAKOTA, there was a selectiontype choice of dominationcount which performed a custom fitness assessment
and selection operation together. As of version 4.0 of DAKOTA, that functionality has been broken into separate,
more generally usable fitness assessment and selection operators called the domination count fitness assessor and
below limit selector respectively. The effect of using these two operators is the same as the previous behavior of the
dominationcount selector. This means of selection works especially well on multi-objective problems because
it has been specifically designed to avoid problems with aggregating and scaling objective function values and
transforming them into a single objective. Instead, the fitness assessor works by ranking population members
such that their resulting fitness is a function of the number of other designs that dominate them. The belowlimit
selector then chooses designs by considering the fitness of each. If the fitness of a design is above a certain limit,
which in this case corresponds to a design being dominated by more than a specified number of other designs, then
it is discarded. Otherwise it is kept and selected to go to the next generation. The one catch is that this selector
will require that a minimum number of selections take place.shrinkage percentage defines the minimum
amount of selections that will take place if enough designs are available. It is interpreted as a percentage of the
population size that must go on to the subsequent generation. To enforce this, the belowlimit selector makes all
the selections it would make anyway and if that is not enough, it relaxes its limit and makes selections from the
remaining designs. It continues to do this until it has made enough selections. The moga method has many other
important features. Complete descriptions can be found in the DAKOTA Reference Manual [29].

Figure2.17shows an example input file which demonstrates some of the multi-objective capabilities available
with the moga method.

This example has three input variables and two objectives. Note that this method is referring to a different problem
than the Rosenbrock function because we wanted to demonstrate the capability on a problem with two conflicting
objectives. This example is taken from a testbed of multi-objective problems [15]. The final results from moga
are output to a file calledfinaldata.dat in the directory in which you are running. Thisfinaldata.dat
file is simply a list of inputs and outputs. Plotting the output columns against each other allows one to see the
Pareto front generated bymoga. Figure2.18shows an example of the Pareto front for this problem. Note that
a Pareto front easily shows the tradeoffs between Pareto optimal solutions. For example, look at the point with
f1 and f2 values equal to (0.9, 0.25). One cannot improve (minimize) the value of objective function f1 without
increasing the value of f2: another point on the Pareto front, (0.6, 0.6) represents a better value of objective f1 but
a worse value of objective f2.

Sections7.2and7.3provide more information on multiobjective optimization. There are three detailed examples
provided in Section21.11.

2.4.9 Monte Carlo Sampling

Figure 2.19 shows the DAKOTA input file for an example problem which demonstrates some of the random
sampling capabilities available in DAKOTA. In this example, the design parameters, x1 and x2, will be treated
as uncertain parameters that have uniform distributions over the interval [-2, 2]. This is specified in the vari-
ables section of the input file, beginning with the keyworduniform uncertain . For comparison, the key-
words from the previous examples are retained, but have been commented out. Another change in the in-
put file occurs in the responses section where the keywordnum response functions is used in place of
num objective functions . The final changes to the input file occur in the method section, where the
keywordnond sampling (nond is an abbreviation for nondeterministic) is used. The other keywords in the

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

44 CHAPTER 2. GETTING STARTED WITH DAKOTA

strategy, \
single \
graphics tabular_graphics_data

method, \
moga \
output silent \
seed = 10983 \
max_function_evaluations = 2500 \
initialization_type unique_random \
crossover_type shuffle_random \

num_offspring = 2 num_parents = 2 \
crossover_rate = 0.8 \

mutation_type replace_uniform \
mutation_rate = 0.1 \

fitness_type domination_count \
replacement_type below_limit = 6 \

shrinkage_percentage = 0.9 \
convergence_type metric_tracker \

percent_change = 0.05 num_generations = 10

variables, \
continuous_design = 3 \

cdv_initial_point 0 0 0 \
cdv_upper_bounds 4 4 4 \
cdv_lower_bounds -4 -4 -4 \
cdv_descriptor ’x1’ ’x2’ ’x3’ \

interface, \
system \

analysis_driver = ’mogatest1’ \

responses, \
num_objective_functions = 2 \
no_gradients \
no_hessians

Figure 2.17: Multiple objective genetic algorithm (MOGA) example: the DAKOTA input file.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.4. EXAMPLE PROBLEMS 45

Figure 2.18: Multiple objective genetic algorithm (MOGA) example: Pareto front showing tradeoffs between
functions f1 and f2.

methods section of the input file specify the number of samples (200), the seed for the random number gener-
ator (17), the sampling method (random), and the response threshold (100.0). Theseed specification allows a
user to obtain repeatable results from multiple runs. If a seed value is not specified, then DAKOTA’s sampling
methods are designed to generate nonrepeatable behavior (by initializing the seed using a system clock). The key-
word response thresholds allows the user to specify threshold values for which DAKOTA will compute
statistics on the response function output. Note that a unique threshold value can be specified for each response
function.

In this example, DAKOTA will select 200 design points from within the parameter space, evaluate the value of
Rosenbrock’s function at all 200 points, and then perform some basic statistical calculations on the 200 response
values.

This DAKOTA input file is executed using the following command:

dakota -i dakota_rosenbrock_nond.in > nond.out

See the filenond.out.sav in /Dakota/GettingStarted/Examples for comparison to the results pro-
duced by DAKOTA. Note that your results will differ from those in this file if yourseed value differs or if no
seed is specified.

The statistical data on the 200 Monte Carlo samples is printed at the end of the output file in the section that starts
with “Statistics for each response function....” In this section, DAKOTA outputs the mean, standard deviation,
coefficient of variation, and 95% confidence intervals for each of the response functions, followed by the per-
centages of the response function values that are above and below the response threshold values specified in the
input file. Figure2.20shows the locations of the 200 sample sites within the parameter space of the Rosenbrock

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

46 CHAPTER 2. GETTING STARTED WITH DAKOTA

function.

strategy, \
single_method \

tabular_graphics_data

method, \
nond_sampling \

samples = 200 seed = 17 \
sample_type random \
response_levels = 100.0

model, \
single

variables, \
uniform_uncertain = 2 \

uuv_lower_bounds -2.0 -2.0 \
uuv_upper_bounds 2.0 2.0 \
uuv_descriptor ’x1’ ’x2’

interface, \
fork asynch \

direct \
analysis_driver = ’rosenbrock’ \

responses, \
num_response_functions = 1 \
no_gradients \
no_hessians

Figure 2.19: Monte Carlo sampling example: the DAKOTA input file.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.4. EXAMPLE PROBLEMS 47

Figure 2.20: Monte Carlo sampling example: locations in the parameter space of the 200 Monte Carlo samples
using a uniform distribution for bothx1 andx2.

2.4.10 Optimization with a User-Supplied Simulation Code - Case 1

Many of the previous examples made use of the direct interface to access the Rosenbrock and textbook test
functions that are compiled into DAKOTA. In engineering applications, it is much more common to use the
system or fork interface approaches within DAKOTA to manage external simulation codes. In both of these
cases, the communication between DAKOTA and the external code is conducted through the reading and writing
of short text files. For this example, the C++ programrosenbrock.C in /Dakota/test is used as the
simulation code. This file is compiled to create the stand-alonerosenbrock executable that is referenced as
the analysis driver in Figure2.21. This stand-alone program performs the same function evaluations as
DAKOTA’s internal Rosenbrock test function.

Figure 2.21 shows the text of the DAKOTA input file nameddakota rosenbrock syscall.in that is
provided in the directory/Dakota/GettingStarted/Examples . The only differences between this input
file and the one in Figure2.7 occur in theinterfacekeyword section. The keywordsystem indicates that
DAKOTA will use system calls to create separate Unix processes for executions of the user-supplied simulation
code. The name of the simulation code, and the names for DAKOTA’s parameters and results file are specified
using theanalysis driver , parameters file , andresults file keywords, respectively.

This example problem is executed using the command:

dakota -i dakota_rosenbrock_syscall.in > syscall.out

This run of DAKOTA takes longer to complete than the previous gradient-based optimization example since the
system interface method has additional process creation and file I/O overhead, as compared to the internal com-
munication that occurs when thedirect interface method is used. The filesyscall.out.sav is provided in
the /Dakota/GettingStarted/Examples directory for comparison to the output results produced when
executing the command given above.

To gain a better understanding of what exactly DAKOTA is doing with thesystem interface approach, add the
keywordsfile tag and file save to the interface specification and re-run DAKOTA. Check the listing of
the local directory and you will see many new files with names such asparams.in.1 , params.in.2 , etc.,
andresults.out.1 , results.out.2 , etc. There is oneparams.in.X file and oneresults.out.X

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

48 CHAPTER 2. GETTING STARTED WITH DAKOTA

file for each of the function evaluations performed by DAKOTA. This is the file listing forparams.in.1 :

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.4. EXAMPLE PROBLEMS 49

2 variables
-1.200000000000000e+00 x1

1.000000000000000e+00 x2
1 functions
1 ASV_1
2 derivative_variables
1 DVV_1
2 DVV_2
0 analysis_components

The basic pattern is that of array lengths and string identifiers followed by listings of the array entries, where the
arrays consist of the variables, the active set vector (ASV), the derivative values vector (DVV), and the analysis
components (AC). For the variables array, the first line gives the total number of variables (2) and the “variables”

strategy, \
single_method \

tabular_graphics_data

method, \
conmin_frcg \

max_iterations = 100 \
convergence_tolerance = 1e-4 \

model, \
single

variables, \
continuous_design = 2 \

cdv_initial_point -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors ’x1’ ’x2’ \

interface, \
fork asynch \
system \

analysis_driver = ’rosenbrock’ \
parameters_file = ’params.in’ \
results_file = ’results.out’

responses, \
num_objective_functions = 1 \
numerical_gradients \

method_source dakota \
interval_type forward \
fd_gradient_step_size = 1.e-5 \

no_hessians

Figure 2.21: DAKOTA input file for gradient-based optimization using the system call interface to an external
rosenbrock simulator.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

50 CHAPTER 2. GETTING STARTED WITH DAKOTA

string identifier, and the subsequent two lines provide the array listing for the two variable values (-1.2 and 1.0)
and descriptor tags (“x1” and “x2” from the DAKOTA input file). The next array provides the ASV which
defines the data requests for the simulator outputs. The first line of the array gives the total number of response
functions (1) and the “functions” string identifier, followed by the listing of the one ASV code and descriptor
tag (“ASV 1”). In this case, the ASV value of 1 indicates that DAKOTA is requesting that the simulation code
return the response function value in the fileresults.out.X (ASV values: 1 = value of response function
value, 2 = response function gradient, 4 = response function Hessian, and any combination up to 7 = response
function value, gradient, and Hessian; see Section11.7for more detail). The next array provides the DVV which
defines the variable identifiers used in computing derivatives. The first line of the array gives the number of
derivative variables (2) and the “derivativevariables” string identifier, followed by the listing of the two DVV
variable identifiers (the first and second variables) and descriptor tags (“DVV1” and “DVV 2”). The final array
provides the AC which are used to provide additional strings for use by the simulator (e.g., to provide the name
of a particular mesh file). The first line of the array gives the total number of analysis components (0) and the
“analysiscomponents” string identifier, followed by the listing of the array, which is empty in this case.

The executable program rosenbrock reads in theparams.in.X file and evaluates the objective function at the
given values forx1 andx2. Then, rosenbrock writes out the objective function data to theresults.out.X file.
Here is the listing for the fileresults.out.1 :

2.420000000000000e+01 f

The value shown above is the value of the objective function, and the descriptor ‘f’ is an optional tag returned by
the simulation code. When the system call has completed, DAKOTA reads in the data from theresults.in.X
file and processes the results. DAKOTA then continues with additoinal executions of the rosenbrock program
until the optimization process is complete.

2.4.11 Optimization with a User-Supplied Simulation Code - Case 2

In many situations the user-supplied simulation code cannot be modified to read and write theparams.in.X
file and theresults.out.X file, as described above. Typically, this occurs when the simulation code is
a commercial or proprietary software product that has specific input file and output file formats. In such cases,
it is common to replace the executable program name in the DAKOTA input file with the name of a Unix shell
script containing a sequence of commands that read and write the necessary files and run the simulation code. For
example, the executable program namedrosenbrock listed in Figure2.21could be replaced by a Unix C-shell
script namedsimulator script , with the script containing a sequence of commands to perform the following
steps: insert the data from theparameters.in.X file into the input file of the simulation code, execute the
simulation code, post process the files generated by the simulation code to compute response data, and return the
response data to DAKOTA in theresults.out.X file. The steps that are typically used in constructing and
using a Unix shell script are described in Section16.1.

2.5 Where to Go from Here

This chapter has provided an introduction to the basic capabilities of DAKOTA including parameter studies, var-
ious types of optimization, and uncertainty quantification sampling. More information on the DAKOTA input
file syntax is provided in the remaining chapters in this text and in the DAKOTA Reference Manual [29]. Addi-
tional example problems that demonstrate some of DAKOTA’s advanced capabilities are provided in Chapter6,
Chapter9, Chapter16, and Chapter21.

Here are a few pointers to sections of this manual that many new users find useful:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

2.5. WHERE TO GO FROM HERE 51

• Chapter15 describes the different DAKOTA output file formats, including commonly encountered error
messages.

• Chapter16demonstrates how to employ DAKOTA with a user-supplied simulation code.
Most DAKOTA users will follow the approach described in this chapter.

• Chapter18 provides guidelines on how to choose an appropriate optimization, uncertainty quantification,
or parameter study method based on the characteristics of your application.

• Chapter19describes the file restart and data re-use capabilities of DAKOTA.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

52 CHAPTER 2. GETTING STARTED WITH DAKOTA

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 3

DAKOTA Capability Overview

3.1 Purpose

This chapter provides a brief, but comprehensive, overview of DAKOTA’s capabilities. Additional details and
example problems are provided in subsequent chapters in this manual.

3.2 Parameter Study Methods

Parameter studies are often performed to explore the effect of parametric changes within simulation models.
DAKOTA provides four parameter study methods that may be selected by the user.

Multidimensional : Forms a regular lattice or grid in an n-dimensional parameter space, where the user specifies
the number of intervals used for each parameter.

Vector: Performs a parameter study along a line between any two points in an n-dimensional parameter space,
where the user specifies the number of steps used in the study.

Centered: Given a point in an n-dimensional parameter space, this method evaluates nearby points along the
coordinate axes of the parameter space. The user selects the number of steps and the step size.

List : The user supplies a list of points in an n-dimensional space where DAKOTA will evaluate response data
from the simulation code.

Additional information on these methods is provided in Chapter4.

3.3 Design of Experiments

Design of experiments are often used to explore the parameter space of an engineering design problem. In design
of experiments, especially design of computer experiments, one wants to generate input points that provide good
coverage of the input parameter space. There is significant overlap between design of experiments and sampling.
We consider design of experiment methods to generate sets of uniform random variables on the interval[0, 1],
with the goal of characterizing the behavior of the response functions over the input parameter ranges of inter-
est. Uncertainty quantification, in contrast, involves characterizing the uncertain input variables with probability

54 CHAPTER 3. DAKOTA CAPABILITY OVERVIEW

distributions such as normal, Weibull, triangular, etc., sampling from the input distributions, and propagating the
input uncertainties to obtain a cumulative distribution function on the output or system response. We use the Latin
Hypercube Sampling software (also developed at Sandia) for generating samples on input distributions used in
uncertainty quantification. LHS is explained in more detail in the subsequent section3.4. Two software packages
are available in DAKOTA for design of computer experiments, DDACE (developed at Sandia Labs) and FSU-
DACE (developed at Florida State University). Often, both sampling and experimental design techniques can be
used to obtain similar results about the behavior of the response functions and about the relative importance of the
input variables.

DDACE (Distributed Design and Analysis of Computer Experiments): The DACE package includes both
stochastic sampling methods and classical design of experiments methods [96]. The stochastic methods are Monte
Carlo (random) sampling, Latin Hypercube sampling, orthogonal array sampling, and orthogonal array-latin hy-
percube sampling. The orthogonal array sampling allows for the calculation of main effects. The DDACE package
currently supports variables that have either normal or uniform distributions. However, only the uniform distribu-
tion is available in the DAKOTA interface to DDACE. The classical design of experiments methods in DDACE
are central composite design (CCD) and Box-Behnken (BB) sampling. A grid-based sampling method also is
available. DDACE is available under a GNU Lesser General Public License and is distributed with DAKOTA.

FSUDace (Florida State University Design and Analysis of Computer Experiments): The FSUDace pack-
age provides quasi-Monte Carlo sampling (Halton and Hammersley) and Centroidal Voronio Tesselation (CVT)
methods. The quasi-Monte Carlo and CVT methods are designed with the goal of low discrepancy. Discrepancy
refers to the nonuniformity of the sample points within the unit hypercube. Low discrepancy sequences tend to
cover the unit hypercube reasonably uniformly. Quasi-Monte Carlo methods produce low discrepancy sequences,
especially if one is interested in the uniformity of projections of the point sets onto lower dimensional faces of
the hypercube. CVT does very well volumetrically: it spaces the points fairly equally throughout the space, so
that the points cover the region and are isotropically distributed with no directional bias in the point placement.
FSUDace is available under a GNU Lesser General Public License and is distributed with DAKOTA.

Additional information on these methods is provided in Chapter5.

3.4 Uncertainty Quantification

Uncertainty quantification methods (also referred to as nondeterministic analysis methods) involve the computa-
tion of probabilistic information about response functions based on sets of simulations taken from the specified
probability distributions for uncertain input parameters. Put another way, these methods perform a forward un-
certainty propagation in which probability information for input parameters is mapped to probability information
for output response functions. The UQ methods in DAKOTA include various sampling-based approaches (e.g.,
Monte Carlo and Latin Hypercube sampling), along with analytic reliability methods and stochastic finite element
methods. We recently added the capability to perform epistemic uncertainty quantification in DAKOTA.

LHS (Latin Hypercube Sampling): This package provides both Monte Carlo (random) sampling and Latin
Hypercube sampling methods, which can be used with probabilistic variables in DAKOTA that have the following
distributions: normal, lognormal, uniform, loguniform, triangular, beta, gamma, gumbel, frechet, weibull, and
user-supplied histograms. In addition, LHS accounts for correlations among the variables [63], which can be used
to accommodate a user-supplied correlation matrix or to minimize correlation when a correlation matrix is not
supplied. The LHS package currently serves two purposes: (1) it can be used for uncertainty quantification by
sampling over uncertain variables characterized by probability distributions, or (2) it can be used in a DACE mode
in which any design and state variables are treated as having uniform distributions (see theall variables flag
in the DAKOTA Reference Manual [29]). The LHS package comes in two versions: “old” (circa 1980) and “new”
(circa 1998), where the latter is preferred when Fortran 90 compilers are available. New LHS is available under

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

3.5. OPTIMIZATION SOFTWARE PACKAGES 55

a separate GNU General Public License and old LHS is provided under the DAKOTA GPL umbrella. Both are
distributed with DAKOTA.

Reliability Methods: This suite of methods include first- and second-order versions of the Mean Value method
(MVFOSM and MVSOSM) and a variety of most probable point (MPP) search methods, including the Advanced
Mean Value method (AMV and AMV2), the iterated Advanced Mean Value method (AMV+ and AMV2+), the
Two-point Adaptive Nonlinearity Approximation method (TANA-3), and the traditional First Order and Second
Order Reliability Methods (FORM and SORM). Reliability mappings may involve computing reliability and
probability levels for prescribed response levels (forward reliability analysis, commonly known as the reliability
index approach or RIA) or computing response levels for prescribed reliability and probability levels (inverse
reliability analysis, commonly known as the performance measure approach or PMA). Approximation-based
MPP search methods (AMV, AMV2, AMV+, AMV 2+, and TANA) may be applied in either x-space or u-space,
and mappings may involve either cumulative or complementary cumulative distribution functions.

Stochastic Finite Element Methods: The objective of these techniques is to characterize the response of sys-
tems whose governing equations involve stochastic coefficients. The development of these techniques mirrors
that of deterministic finite element analysis utilizing the notions of projection, orthogonality, and weak conver-
gence [44], [45].

Dempster-Shafer Theory of Evidence: The objective of Evidence theory is to model the effects of epistemic
uncertainties. Epistemic uncertainty refers to the situation where one does not know enough to specify a proba-
bility distribution on a variable. Sometimes epistemic uncertainty is referred to as subjective, reducible, or lack
of knowledge uncertainty. In contrast, aleatory uncertainty refers to the situation where one does have enough
information to specify a probability distribution. In Dempster-Shafer theory of evidence, the uncertain input vari-
ables are modeled as sets of intervals. The user assigns a basic probability assignment (BPA) to each interval,
indicating how likely it is that the uncertain input falls within the interval. The intervals may be overlapping,
contiguous, or have gaps. The intervals and their associated BPAs are then propagated through the simulation
to obtain cumulative distribution functions on belief and plausibility. Belief is the lower bound on a probability
estimate that is consistent with the evidence, and plausibility is the uppder bound on a probability estimate that is
consistent with the evidence.

Additional information on these methods is provided in Chapter6.

3.5 Optimization Software Packages

Several optimization software packages have been integrated with DAKOTA. These include freely-available soft-
ware packages developed by research groups external to Sandia Labs, Sandia-developed software that has been
released to the public under GNU licenses, and commercially-developed software. These optimization software
packages provide the DAKOTA user with access to well-tested, proven methods for use in engineering design
applications, as well as access to some of the newest developments in optimization algorithm research.

COLINY : Methods for nongradient-based local and global optimization which utilize the Common Optimization
Library INterface (COLIN). This algorithm library supersedes the SGOPT library. COLINY currently includes
evolutionary algorithms (including several genetic algorithms and Evolutionary Pattern Search), simple pattern
search, Monte Carlo sampling, and the DIRECT and Solis-Wets algorithms. COLINY also include interfaces to
third-party optimizers APPS [62] and COBYLA2. This software is available to the public under a GNU Lesser
General Public License (LGPL) through ACRO (A Common Repository for Optimizers) and the source code for
COLINY is included with DAKOTA (web page:http://www.cs.sandia.gov/Acro).

CONMIN (CONstrained MINimization) : Methods for gradient-based constrained and unconstrained optimiza-
tion [99]. The constrained optimization algorithm is the method of feasible directions (MFD) and the uncon-

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

http://www.cs.sandia.gov/Acro

56 CHAPTER 3. DAKOTA CAPABILITY OVERVIEW

strained optimization algorithm is the Fletcher-Reeves conjugate gradient (CG) method. This software is freely
available to the public from NASA, and the CONMIN source code is included with DAKOTA.

DOT (Design Optimization Tools): Methods for gradient-based optimization for constrained and unconstrained
optimization problems [101]. The algorithms available for constrained optimization are modified-MFD, SQP, and
sequential linear programming (SLP). The algorithms available for unconstrained optimization are the Fletcher-
Reeves CG method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton technique. DOT is a com-
mercial software product of Vanderplaats Research and Development, Inc. (web page:http://www.vrand.
com). Sandia National Laboratories and Los Alamos National Laboratory have limited seats for DOT.Other users
may obtain their own copy of DOT and compile it with the DAKOTA source code by following the steps given in
the file /Dakota/INSTALL.

JEGA: provides SOGA and MOGA (single- and multi-objective genetic algorithms) optimization methods. The
SOGA method provides a basic GA optimization capability that uses many of the same software elements as the
MOGA method. The MOGA package allows for the formulation of multiobjective optimization problems without
the need to specify weights on the various objective function values. The MOGA method directly identifies non-
dominated design points that lie on the Pareto front through tailoring of its genetic search operators. The advantage
of the MOGA method versus conventional multiobjective optimization with weight factors (see Section3.6), is
that MOGA finds points along the entire Pareto front whereas the multiobjective optimization method produces
only a single point on the Pareto front. The advantage of the MOGA method versus the Pareto-set optimization
strategy (see Section3.8) is that MOGA is better able to find points on the Pareto front when the Pareto front
is nonconvex. However, the use of a GA search method in MOGA causes the MOGA method to be much more
computationally expensive than conventional multiobjective optimization using weight factors.

MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization) : formerly known as rSQP++,
MOOCHO provides both general-purpose gradient-based algorithms for nested analysis and design (NAND) and
large-scale gradient-based optimization algorithms for simultaneous analysis and design (SAND). This software
is not yet distributed with DAKOTA.

NLPQLP : Methods for gradient-based constrained and unconstrained optimization problems using a sequen-
tial quadratic programming (SQP) algorithm [90]. NLPQLP is a commercial software product of Prof. Klaus
Schittkowski (web site:http://www.uni-bayreuth.de/departments/math/˜kschittkowski/
nlpqlp20.htm). Users may obtain their own copy of NLPQLP and compile it with the DAKOTA source code
by following the steps given in the file /Dakota/INSTALL.

NPSOL: Methods for gradient-based constrained and unconstrained optimization problems using a sequential
quadratic programming (SQP) algorithm [46]. NPSOL is a commercial software product of Stanford University
(web site: www.sbsi-sol-optimize.com). Sandia National Laboratories, Lawrence Livermore National Laboratory,
and Los Alamos National Laboratory all have site licenses for NPSOL.Other users may obtain their own copy of
NPSOL and compile it with the DAKOTA source code by following the steps given in the file /Dakota/INSTALL.

OPT++: Methods for gradient-based and nongradient-based optimization of unconstrained, bound-constrained,
and nonlinearly constrained optimization problems [73]. OPT++ includes a variety of Newton-based methods
(quasi-Newton, finite-difference Newton, Gauss-Newton, and full-Newton), as well as the Polak-Ribeire CG
method and the parallel direct search (PDS) method. OPT++ now contains a nonlinear interior point algorithm for
handling general constraints. OPT++ is an active research tool and new optimization capabilities are continually
being added to its suite of capabilities. OPT++ is available to the public under the GNU LGPL and the source
code is included with DAKOTA (web page:http://csmr.ca.sandia.gov/projects/opt++/opt+
+.html).

PICO (Parallel Integer Combinatorial Optimization) : PICO’s branch-and-bound algorithm can be applied to
nonlinear optimization problems involving discrete variables or a combination of continuous and discrete vari-
ables [25]. The discrete variables must be noncategorical (see Section11.2.2). PICO is available to the public

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

http://www.vrand.com
http://www.vrand.com
http://www.uni-bayreuth.de/departments/math/~kschittkowski/nlpqlp20.htm
http://www.uni-bayreuth.de/departments/math/~kschittkowski/nlpqlp20.htm
http://csmr.ca.sandia.gov/projects/opt++/opt++.html
http://csmr.ca.sandia.gov/projects/opt++/opt++.html

3.6. ADDITIONAL OPTIMIZATION CAPABILITIES 57

under the GNU LGPL (web page:http://www.cs.sandia.gov/PICO) and the source code is included
with DAKOTA as part of the Acro package. Notes: (1) PICO’s linear programming solvers are not included with
DAKOTA, (2) PICO is being migrated into COLINY and is not operational in DAKOTA 4.0.

SGOPT (Stochastic Global OPTimization): Access to this library within DAKOTA has been deprecated; the
methods have been migrated to the COLINY library.

Additional information on these methods is provided in Chapter7.

3.6 Additional Optimization Capabilities

The optimization software packages described above provide algorithms to handle a wide variety of optimization
problems. This includes algorithms for constrained and unconstrained optimization, as well as algorithms for
gradient-based and nongradient-based optimization. Listed below are additional optimization capabilities that are
available in DAKOTA.

Multiobjective Optimization : There are three capabilities for multiobjective optimization in DAKOTA. First,
there is the MOGA capability described previously in Section3.5. This is a specialized algorithm capability.
The second capability involves the use of response data transformations to recast a multiobjective problem as a
single-objective problem. Currently, DAKOTA supports the weighting factor approach for this transformation,
in which a composite objective function is constructed from a set of individual objective functions using a user-
specified set of weighting factors. This approach is optimization algorithm independent, in that it works with any
of the optimization methods listed in Section3.5. Constraints are not affected by the weighting factor mapping;
therefore, both constrained and unconstrained multiobjective optimization problems can be formulated and solved
with DAKOTA, assuming selection of an appropriate constrained or unconstrained single-objective optimization
algorithm. Future multiobjective response data transformations for goal programming, normal boundary inter-
section, etc. are planned. The third capability is the Pareto-set optimization strategy described in Section3.8.
This capability also utilizes the multiobjective response data transformations to allow optimization algorithm in-
dependence; however, it builds upon the basic approach by computing sets of optima in order to generate a Pareto
trade-off surface.

Simultaneous Analysis and Design (SAND): In SAND, one converges the optimization process at the same time
as converging a nonlinear simulation code. In this approach, the solution of the simulation code (often a system
of ordinary or partial differential equations) is posed as a set of equality constraints in the optimization problem
and these equality constraints are only satisfied by the optimizer in the limit. This formulation necessitates a close
coupling between DAKOTA and the simulation code so that the internal vectors and matrices from the simulation
code (in particular, the residual vector and its state and design Jacobian matrices) are available to the SAND
optimizer. This approach has the potential to reduce the cost of optimization significantly since the nonlinear
simulation is only converged once, instead of on every function evaluation. The drawback is that this approach
requires substantial software modifications to the simulation code; something that can be impractical in some
cases and impossible in others. A new SAND capability employing the MOOCHO library is under development
that will intrusively couple DAKOTA with multiphysics simulation frameworks under development at Sandia.

User-Specified or Automatic Scaling: Some optimization algorithms are sensitive to the relative scaling of the
inputs and outputs in a problem. With any optimizer or least squares solver, user-specified or automatic scaling
may be applied to any of continuous design variables, nonlinear inequality and equality constraints, and linear
inequality and equality constraints.

Additional information on these capabilities is provided in Chapter7.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

http://www.cs.sandia.gov/PICO

58 CHAPTER 3. DAKOTA CAPABILITY OVERVIEW

3.7 Nonlinear Least Squares for Parameter Estimation

Nonlinear least squares methods are optimization algorithms which exploit the special structure of a least squares
objective function (see Section1.4.2). These problems commonly arise in parameter estimation and test/analysis
reconciliation. In practice, least squares solvers will tend to converge more rapidly than general-purpose opti-
mization algorithms when the residual terms in the least squares formulation tend towards zero at the solution.
Least squares solvers may experience difficulty when the residuals at the solution are significant, although experi-
ence has shown that the NL2SOL method can handle some problems that are highly nonlinear and have nonzero
residuals at the solution.

NL2SOL: The NL2SOL algorithm [18] uses a secant-based algorithm to solve least-squares problems. In prac-
tice, it is more robust to nonlinear functions and nonzero residuals than conventional Gauss-Newton algorithms.

Gauss-Newton: DAKOTA’s Gauss-Newton algorithm utilizes the Hessian approximation described in Section1.4.2.
The exact objective function value, exact objective function gradient, and the approximate objective function Hes-
sian are defined from the least squares term values and gradients and are passed to the full-Newton optimizer from
the OPT++ software package. As for all of the Newton-based optimization algorithms in OPT++, unconstrained,
bound-constrained, and generally-constrained problems are supported. However, for the generally-constrained
case, a derivative order mismatch exists in that the nonlinear interior point full Newton algorithm will require
second-order information for the nonlinear constraints whereas the Gauss-Newton approximation only requires
first order information for the least squares terms.

NLSSOL: The NLSSOL algorithm is a commercial software product of Stanford University (web site:http:
//www.sbsi-sol-optimize.com) that is bundled with current versions of the NPSOL library. It uses an
SQP-based approach to solve generally-constrained nonlinear least squares problems. It periodically employs
the Gauss-Newton Hessian approximation to accelerate the search. It requires only first-order information for
the least squares terms and nonlinear constraints. Sandia National Laboratories, Lawrence Livermore National
Laboratory, and Los Alamos National Laboratory all have site licenses for NLSSOL.Other users may obtain their
own copy of NLSSOL and compile it with the DAKOTA source code by following the NPSOL installation steps
given in the file /Dakota/INSTALL.

Additional information on these methods is provided in Chapter8.

3.8 Optimization Strategies

Due to the flexibility of DAKOTA’s object-oriented design, it is relatively easy to create algorithms that combine
several of DAKOTA’s capabilities. These algorithms are referred to asstrategies:

Multilevel Hybrid Optimization : This strategy allows the user to specify a sequence of optimization methods,
with the results from one method providing the starting point for the next method in the sequence. An example
which is useful in many engineering design problems involves the use of a nongradient-based global optimization
method (e.g., genetic algorithm) to identify a promising region of the parameter space, which feeds its results into
a gradient-based method (quasi-Newton, SQP, etc.) to perform an efficient local search for the optimum point.

Multistart Local Optimization : This strategy uses many local optimization runs (often gradient-based), each of
which is started from a different initial point in the parameter space. This is an attractive strategy in situations
where multiple local optima are known to exist or may potentially exist in the parameter space. This approach
combines the efficiency of local optimization methods with the parameter space coverage of a global stratification
technique.

Pareto-Set Optimization: The Pareto-set optimization strategy allows the user to specify different sets of weights

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

http://www.sbsi-sol-optimize.com
http://www.sbsi-sol-optimize.com

3.9. SURROGATE MODELS 59

for the individual objective functions in a multiobjective optimization problem. DAKOTA executes each of these
weighting sets as a separate optimization problem, serially or in parallel, and then outputs the set of optimal de-
signs which define the Pareto set. Pareto set information can be useful in making trade-off decisions in engineering
design problems.[Refer to3.6for additional information on multiobjective optimization methods.]

Mixed Integer Nonlinear Programming (MINLP) : This strategy uses the branch and bound capabilities of the
PICO package to perform optimization on problems that have both discrete and continuous design variables. PICO
provides a branch and bound engine targeted at mixed integer linear programs (MILP), which when combined with
DAKOTA’s nonlinear optimization methods, results in a MINLP capability. In addition, the multiple NLPs solved
within MINLP provide an opportunity for concurrent execution of multiple optimizations.

Surrogate-Based Optimization (SBO): This strategy combines the design of experiments methods, surrogate
models, and optimization capabilities of DAKOTA. In SBO, the optimization algorithm operates on a surrogate
model instead of directly operating on the computationally expensive simulation model. The surrogate model
can be formed from data fitting methods (local, multipoint, or global), from a lower fidelity version of the com-
putational model, or from a mathematically-generated reduced-order model (see Section3.9). For each of these
surrogate model types, the SBO algorithm periodically validates the progress using the surrogate model against
the original high-fidelity model. The SBO strategy in DAKOTA can be configured to employ heuristic rules (less
expensive) or to be provably convergent to the optimum of the original model (more expensive). The development
of SBO strategies is an area of active research in the DAKOTA project.

These strategies are covered in more detail in Chapter9.

3.9 Surrogate Models

Surrogate models are inexpensive approximate models that are intended to capture the salient features of an
expensive high-fidelity model. They can be used to explore the variations in response quantities over regions of the
parameter space, or they can serve as inexpensive stand-ins for optimization or uncertainty quantification studies
(see, for example, the surrogate-based optimization strategy in Section3.8). The surrogate models supported in
DAKOTA can be categorized into three types: data fits, multifidelity, and reduced-order model surrogates.

Data fitting methods involve construction of an approximation or surrogate model using data (response values,
gradients, and Hessians) generated from the original truth model. Data fit methods can be further categorized as
local, multipoint, and global approximation techniques, based on the number of points used in generating the data
fit. Local methods involve response data from a single point in parameter space. Available techniques currently
include:

Taylor Series Expansion: This is a local first-order or second-order expansion centered at a single point in the
parameter space.

Multipoint approximations involve response data from two or more points in parameter space, often involving the
current and previous iterates of a minimization algorithm. Available techniques currently include:

TANA-3 : This multipoint approximation uses a two-point exponential approximation [109, 38] built with re-
sponse value and gradient information from the current and previous iterates.

Global methods, often referred to asresponse surface methods, involve many points spread over the parameter
ranges of interest. These surface fitting methods work in conjunction with the sampling methods and design of
experiments methods described in Section3.3.

Polynomial Regression: First-order (linear), second-order (quadratic), and third-order (cubic) polynomial re-
sponse surfaces computed using linear least squares regression methods. Note: there is currently no use of
forward- or backward-stepping regression methods to eliminate unnecessary terms from the polynomial model.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

60 CHAPTER 3. DAKOTA CAPABILITY OVERVIEW

Kriging Interpolation : An implementation of spatial interpolation using kriging methods and Gaussian corre-
lation functions [51]. The algorithm used in the kriging process generates aC2-continuous surface that exactly
interpolates the data values.

Gaussian Process (GP): Closely related to kriging, this technique is a spatial interpolation method that assumes
the outputs of the simulation model follow a multivariate normal distribution. The implementation of a Gaussian
process currently in DAKOTA assumes a constant mean function. The hyperparameters governing the covariance
matrix are obtained through Maximum Likelihood Estimation (MLE). We also use a jitter term to better condition
the covariance matrix, so the Gaussian process may not exactly interpolate the data values.

Artificial Neural Networks : An implementation of the stochastic layered perceptron neural network developed
by Prof. D. C. Zimmerman of the University of Houston [110]. This neural network method is intended to have a
lower training (fitting) cost than typical back-propagation neural networks.

Multivariate Adaptive Regression Splines (MARS): Software developed by Prof. J. H. Friedman of Stanford
University [42]. The MARS method creates aC2-continuous patchwork of splines in the parameter space.

Hermite: This technique involves the use of Hermite polynomials that are defined as functions of standard normal
Gaussian random variables. This data fit is currently used exclusively for polynomial chaos expansions.

In addition to data fit surrogates, DAKOTA also supports multifidelity and reduced-order model approximations:

Multifidelity Surrogates : Multifidelity modeling involves the use of a low-fidelity physics-based model as a
surrogate for the original high-fidelity model. The low-fidelity model typically involves a coarsher mesh, looser
convergence tolerances, reduced element order, or omitted physics. It is a separate model in its own right and
does not require data from the high-fidelity model for construction. Rather, the primary need for high-fidelity
evaluations is for defining correction functions that are applied to the low-fidelity results.

Reduced Order Models: A reduced-order model (ROM) is mathematically derived from a high-fidelity model
using the technique of Galerkin projection. By computing a set of basis functions (e.g., eigenmodes, left singular
vectors) that capture the principal dynamics of a system, the original high-order system can be projected to a much
smaller system, of the size of the number of retained basis functions.

Additional information on these surrogate methods is provided in Sections10.3.1through10.3.3.

3.10 Nested Models

Nested models utilize a sub-iterator and a sub-model to perform a complete iterative study as part of every eval-
uation of the model. This sub-iteration accepts variables from the outer level, performs the sub-level analysis,
and computes a set of sub-level responses which are passed back up to the outer level. The nested model con-
structs admit a wide variety of multi-iterator, multi-model solution approaches. For example, optimization within
optimization (for hierarchical multidisciplinary optimization), uncertainty quantification within uncertainty quan-
tification (for second-order probability), uncertainty quantification within optimization (for optimization under
uncertainty), and optimization within uncertainty quantification (for uncertainty of optima) are all supported, with
and without surrogate model indirection. Two important examples are highlighted: second-order probability and
optimization under uncertainty.

Second-Order Probability: Second-order probability approaches employ nested models to embed one uncer-
tainty quantification (UQ) within another. The outer level UQ is commonly linked to epistemic uncertainties (also
known as reducible uncertainties) resulting from a lack of knowledge, and the inner UQ is commonly linked to
aleatory uncertainties (also known as irreducible uncertainties) that are inherent in nature. The outer level gener-
ates sets of realizations, typically from sampling within interval distributions. These realizations define values for
distribution parameters used in a probabilistic analysis for the inner level UQ. The term “second-order” derives

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

3.11. PARALLEL COMPUTING 61

from this use of distributions on distributions and the generation of statistics on statistics.

Optimization Under Uncertainty (OUU) : Many real-world engineering design problems contain stochastic fea-
tures and must be treated using OUU methods such as robust design and reliability-based design. For OUU, the
uncertainty quantification methods of DAKOTA are combined with optimization algorithms. This allows the user
to formulate problems where one or more of the objective and constraints are stochastic. Due to the computa-
tional expense of both optimization and UQ, the simple nesting of these methods in OUU can be computation-
ally prohibitive for real-world design problems. For this reason, surrogate-based optimization under uncertainty
(SBOUU) and reliability-based design optimization (RBDO) methods have been developed which can reduce the
overall expense by orders of magnitude. OUU methods are an active research area.

Additional information on these nested approaches is provided in Sections10.4-10.5.

3.11 Parallel Computing

The methods and strategies in DAKOTA are designed to exploit parallel computing resources such as those found
in a desktop multiprocessor workstation, a network of workstations, or a massively parallel computing platform.
This parallel computing capability is a critical technology for rendering real-world engineering design problems
computationally tractable. DAKOTA employs the concept ofmultilevel parallelism, which takes simultaneous
advantage of opportunities for parallel execution from multiple sources:

Parallel Simulation Codes: DAKOTA works equally well with both serial and parallel simulation codes.

Concurrent Execution of Analyses within a Function Evaluation: Some engineering design applications call
for the use of multiple simulation code executions (different disciplinary codes, the same code for different load
cases or environments, etc.) in order to evaluate a single response data set (e.g., abjective functions and con-
straints) for a single set of parameters. If these simulation code executions are independent (or if coupling is
enforced at a higher level), DAKOTA can perform them in parallel.

Concurrent Execution of Function Evaluations within an Iterator : With very few exceptions, the iterative
algorithms described in Section3.2through Section3.7all provide opportunities for the concurrent evaluation of
response data sets for different parameter sets. Whenever there exists a set of design point evaluations that are
independent, DAKOTA can perform them in parallel.

Concurrent Execution of Iterators within a Strategy: Some of the DAKOTA strategies described in Section3.8
generate a sequence of iterator subproblems. For example, the MINLP, Pareto-set, and multi-start strategies gener-
ate sets of optimization subproblems, and the optimization under uncertainty strategy generates sets of uncertainty
quantification subproblems. Whenever these subproblems are independent, DAKOTA can perform them in paral-
lel.

It is important to recognize that these four parallelism levels are nested, in that a strategy can schedule and
manage concurrent iterators, each of which may manage concurrent function evaluations, each of which may
manage concurrent analyses, each of which may execute on multiple processors. Additional information on
parallel computing with DAKOTA is provided in Chapter17.

3.12 Summary

DAKOTA is both a production tool for engineering design and analysis activities and a research tool for the devel-
opment of new algorithms in optimization, uncertainty quantification, and related areas. Because of the extensible,
object-oriented design of DAKOTA, it is relatively easy to add new iterative algorithms, strategies, simulation in-

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

62 CHAPTER 3. DAKOTA CAPABILITY OVERVIEW

terfacing approaches, surface fitting methods, etc. In addition, DAKOTA can serve as a rapid prototyping tool for
algorithm development. That is, by having a broad range of building blocks available (i.e., parallel computing,
surrogate models, simulation interfaces, fundamental algorithms, etc.), new capabilities can be assembled rapidly
which leverage the previous software investments. For additional discussion on framework extensibility, refer to
the DAKOTA Developers Manual [30].

The capabilities of DAKOTA have been used to solve engineering design and optimization problems at Sandia
Labs, at other Department of Energy labs, and by our industrial and academic collaborators. Often, this real-world
experience has provided motivation for research into new areas of optimization. The DAKOTA development team
welcomes feedback on the capabilities of this software toolkit, as well as suggestions for new areas of research.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 4

Parameter Study Capabilities

4.1 Overview

Parameter study methods in the DAKOTA toolkit involve the computation of response data sets at a selection
of points in the parameter space. These response data sets are not linked to any specific interpretation, so they
may consist of any allowable specification from the responses keyword block, i.e., objective and constraint func-
tions, least squares terms and constraints, or generic response functions. This allows the use of parameter studies
in direct coordination with optimization, least squares, and uncertainty quantification studies without significant
modification to the input file. In addition, response data sets are not restricted to function values only; gradients
and Hessians of the response functions can also be catalogued by the parameter study. This allows for several
different approaches to “sensitivity analysis”: (1) the variation of function values over parameter ranges provides
a global assessment as to the sensitivity of the functions to the parameters, (2) derivative information can be com-
puted numerically, provided analytically by the simulator, or both (mixed gradients) in directly determining local
sensitivity information at a point in parameter space, and (3) the global and local assessments can be combined to
investigate the variation of derivative quantities through the parameter space by computing sensitivity information
at multiple points.

In addition to sensitivity analysis applications, parameter studies can be used for investigating nonsmoothness in
simulation response variations (so that models can be refined or finite difference step sizes can be selected for
computing numerical gradients), interrogating problem areas in the parameter space, or performing simulation
code verification (verifying simulation robustness) through parameter ranges of interest. A parameter study can
also be used in coordination with minimization methods as either a pre-processor (to identify a good starting
point) or a post-processor (for post-optimality analysis).

Parameter study methods will iterate any combination ofcontinuousdesign, uncertain, and state variables into
any set of responses (any function, gradient, and Hessian definition). Parameter studies draw no distinction
between the different types of continuous variables (design, uncertain, or state) and the different types of response
functions. They simply pass all of the variables defined in the variables specification into the interface, from which
they expect to retrieve all of the responses defined in the responses specification. As described in Section13.3,
when gradient and/or Hessian information is being catalogued in the parameter study, it is assumed that derivative
components will be computed with respect to all of thecontinuousvariables (continuous design, uncertain, and
continuous state variables) specified. Parameter studies over discrete variables will be supported in the future,
although response derivatives with respect to these variables are not defined.

DAKOTA currently supports four types of parameter studies. Vector parameter studies compute response data

64 CHAPTER 4. PARAMETER STUDY CAPABILITIES

sets at selected intervals along ann-dimensional vector in parameter space. List parameter studies compute
response data sets at a list of points in parameter space, defined by the user. A centered parameter study computes
multiple coordinate-based parameter studies, one per parameter, centered about the initial parameter values. A
multidimensional parameter study computes response data sets for ann-dimensional hypergrid of points. More
detail on these parameter studies is found in Sections4.2through4.5below.

4.1.1 Initial Values

The vector and centered parameter studies use the initial values of the variables from thevariables keyword
block as the starting point and the central point of the parameter studies, respectively. In the case of design
variables, theinitial point is used. In the case of state variables, theinitial state is used. In the
case of uncertain variables, initial values for variables with normal, lognormal, uniform, loguniform, triangular,
beta, gamma, gumbel, frechet, and weibull probability distributions are the means of the distributions, and for
the histogram and interval distribution, are the bin/point/interval lower bounds. These parameter study starting
values for design, uncertain, and state variables are referenced in the following sections using the identifier “Initial
Values.”

4.1.2 Bounds

The multidimensional parameter study uses the bounds of the variables from thevariables keyword block to
define the range of parameter values to study. In the case of design and state variables, thelower bounds and
upper bounds specifications are used. In the case of uncertain variables, bounds for variables with normal and
lognormal distributions are the optional distribution bounds (user-specified or default), for uniform, loguniform,
triangular, and beta distributions, are the required distribution bounds (user-specified), and for the histogram
and interval distributions, are the bin/point/interval lower and upper bounds. For the remaining distributions,
parameter study bounds are inferred using[0, µ+ 3σ] for gamma, frechet, and weibull, and[µ− 3σ, µ+ 3σ] for
gumbel.

4.2 Vector Parameter Study

The vector parameter study computes response data sets at selected intervals along ann-dimensional vector in
parameter space. This capability encompasses both single-coordinate parameter studies (to study the effect of
a single variable on a response set) as well as multiple coordinate vector studies (to investigate the response
variations along some arbitrary vector; e.g., to investigate a search direction failure). In addition to these uses,
this capability is used recursively within the implementation of the multidimensional parameter study.

DAKOTA’s vector parameter study includes three possible specification formulations which are used in conjunc-
tion with the Initial Values (see Section4.1.1) to define the vector and steps of the parameter study:

final_point (vector of reals) and step_length (real)
final_point (vector of reals) and num_steps (integer)
step_vector (vector of reals) and num_steps (integer)

In each of these three cases, the Initial Values are used as the parameter study starting point and the specification
selected from the three above defines the orientation and length of the vector as well as the increments to be
evaluated along the vector. Several examples starting from Initial Values of1.0, 1.0, 1.0 are included
below:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

4.2. VECTOR PARAMETER STUDY 65

final point = 1.0, 2.0, 1.0 andstep length = .4 :

Parameters for function evaluation 1:
1.0000000000e+00 d1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.0000000000e+00 d1
1.4000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 3:
1.0000000000e+00 d1
1.8000000000e+00 d2
1.0000000000e+00 d3

final point = 2.0, 2.0, 2.0 andstep length = .4 (note thatstep length defines Cartesian
distance of the step and the steps continue up to but not past thefinal point):

Parameters for function evaluation 1:
1.0000000000e+00 d1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.2309401077e+00 d1
1.2309401077e+00 d2
1.2309401077e+00 d3

Parameters for function evaluation 3:
1.4618802154e+00 d1
1.4618802154e+00 d2
1.4618802154e+00 d3

Parameters for function evaluation 4:
1.6928203230e+00 d1
1.6928203230e+00 d2
1.6928203230e+00 d3

Parameters for function evaluation 5:
1.9237604307e+00 d1
1.9237604307e+00 d2
1.9237604307e+00 d3

final point = 2.0, 2.0, 2.0 andnum steps = 4 :

Parameters for function evaluation 1:
1.0000000000e+00 d1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.2500000000e+00 d1
1.2500000000e+00 d2
1.2500000000e+00 d3

Parameters for function evaluation 3:
1.5000000000e+00 d1
1.5000000000e+00 d2
1.5000000000e+00 d3

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

66 CHAPTER 4. PARAMETER STUDY CAPABILITIES

Parameters for function evaluation 4:
1.7500000000e+00 d1
1.7500000000e+00 d2
1.7500000000e+00 d3

Parameters for function evaluation 5:
2.0000000000e+00 d1
2.0000000000e+00 d2
2.0000000000e+00 d3

step vector = .1, .1, .1 andnum steps = 4 :

Parameters for function evaluation 1:
1.0000000000e+00 d1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.1000000000e+00 d1
1.1000000000e+00 d2
1.1000000000e+00 d3

Parameters for function evaluation 3:
1.2000000000e+00 d1
1.2000000000e+00 d2
1.2000000000e+00 d3

Parameters for function evaluation 4:
1.3000000000e+00 d1
1.3000000000e+00 d2
1.3000000000e+00 d3

Parameters for function evaluation 5:
1.4000000000e+00 d1
1.4000000000e+00 d2
1.4000000000e+00 d3

4.3 List Parameter Study

The list parameter study computes response data sets at selected points in parameter space. These points are
explicitly specified by the user and are not confined to lie on any line or surface. Thus, this parameter study
provides a general facility that supports the case where the desired set of points to evaluate does not fit the
prescribed structure of the vector, centered, or multidimensional parameter studies.

The user input consists of alist of points specification which lists the requested parameter sets in succes-
sion. The list parameter study simply performs a simulation for the first parameter set (the firstn entries in the
list), followed by a simulation for the next parameter set (the nextn entries), and so on, until the list of points has
been exhausted. Since the Initial Values will not be used, they need not be specified.

An example specification which would result in the same parameter sets as in the first example in Section4.2
would be:

list_of_points = 1.0, 1.0, 1.0, 1.0, 1.4, 1.0, 1.0, 1.8, 1.0

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

4.4. CENTERED PARAMETER STUDY 67

4.4 Centered Parameter Study

The centered parameter study executes multiple coordinate-based parameter studies, one per parameter, centered
about the specified Initial Values. This is useful for investigation of function contours in the vicinity of a specific
point. For example, after computing an optimum design, this capability could be used for post-optimality analysis
in verifying that the computed solution is actually at a minimum or constraint boundary and in investigating the
shape of this minimum or constraint boundary.

This method requirespercent delta (real) anddeltas per variable (integer) specifications, where the
former specifies the size of the increments in percent and the latter specifies the number of increments per variable
in each of the plus and minus directions.

For example, with Initial Values of1.0, 1.0 , apercent delta of 10.0 , and adeltas per variable
of 2, the center point is evaluated followed by four function evaluations (two minus deltas and two plus deltas)
per variable:

Parameters for function evaluation 1:
1.0000000000e+00 cdv_1
1.0000000000e+00 cdv_2

Parameters for function evaluation 2:
8.0000000000e-01 cdv_1
1.0000000000e+00 cdv_2

Parameters for function evaluation 3:
9.0000000000e-01 cdv_1
1.0000000000e+00 cdv_2

Parameters for function evaluation 4:
1.1000000000e+00 cdv_1
1.0000000000e+00 cdv_2

Parameters for function evaluation 5:
1.2000000000e+00 cdv_1
1.0000000000e+00 cdv_2

Parameters for function evaluation 6:
1.0000000000e+00 cdv_1
8.0000000000e-01 cdv_2

Parameters for function evaluation 7:
1.0000000000e+00 cdv_1
9.0000000000e-01 cdv_2

Parameters for function evaluation 8:
1.0000000000e+00 cdv_1
1.1000000000e+00 cdv_2

Parameters for function evaluation 9:
1.0000000000e+00 cdv_1
1.2000000000e+00 cdv_2

This set of points in parameter space is depicted in Figure4.1.

If the Initial Values for the centered parameter study are very small or equal to zero, the study will substitute a
default step size. This is necessary due to the relative nature of thepercent delta specification.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

68 CHAPTER 4. PARAMETER STUDY CAPABILITIES

Figure 4.1: Example centered parameter study.

4.5 Multidimensional Parameter Study

The multidimensional parameter study computes response data sets for ann-dimensional hypergrid of points.
Each continuous variable is partitioned into equally spaced intervals between its upper and lower bounds (see
Section4.1.2), and each combination of the values defined by these partitions is evaluated. The number of function
evaluations performed in the study is:

n∏
i=1

(partitions i + 1) (4.1)

The partitions information is specified using thepartitions specification, which provides an integer list of the
number of partitions for each continuous variable (i.e.,partitions i). Since the Initial Values will not be used,
they need not be specified.

In a two variable example problem withd1 ∈ [0,2] andd2 ∈ [0,3] (as defined by the upper and lower
bounds from the variables specification) and withpartitions = 2,3 , the interval[0,2] is divided into two
equal-sized partitions and the interval[0,3] is divided into three equal-sized partitions. This two-dimensional
grid, shown in Figure4.2, would result in the following twelve function evaluations:

Parameters for function evaluation 1:
0.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 2:
1.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 3:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

4.5. MULTIDIMENSIONAL PARAMETER STUDY 69

Figure 4.2: Example multidimensional parameter study

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

70 CHAPTER 4. PARAMETER STUDY CAPABILITIES

2.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 4:
0.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 5:
1.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 6:
2.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 7:
0.0000000000e+00 d1
2.0000000000e+00 d2

Parameters for function evaluation 8:
1.0000000000e+00 d1
2.0000000000e+00 d2

Parameters for function evaluation 9:
2.0000000000e+00 d1
2.0000000000e+00 d2

Parameters for function evaluation 10:
0.0000000000e+00 d1
3.0000000000e+00 d2

Parameters for function evaluation 11:
1.0000000000e+00 d1
3.0000000000e+00 d2

Parameters for function evaluation 12:
2.0000000000e+00 d1
3.0000000000e+00 d2

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 5

Design of Experiments Capabilities

5.1 Overview

DAKOTA contains three software packages that can be used for sampling and design of experiments: LHS (Latin
hypercube sampling), DDACE (distributed design and analysis for computer experiments), and FSUDace (Florida
State University’s Design and Analysis of Computer Experiments package). LHS [95] is a general-purpose sam-
pling package developed at Sandia that has been used by the DOE national labs for several decades. DDACE is a
more recent package for computer experiments that is under development by staff at Sandia Labs [96]. DDACE
provides the capability for generating orthogonal arrays, Box-Behnken designs, Central Composite designs, and
random designs. The FSUDace package provides the following sampling techniques: quasi-Monte Carlo sam-
pling based on Halton or Hammersley sequences, and Centroidal Voronoi Tessellation.

This chapter focuses on DDACE and FSUDace, with the primary goal of designing computer experiments. Latin
Hypercube Sampling, used in uncertainty quantification, is discussed in Section6.2. The differences between
sampling used in design of experiments and sampling used in uncertainty quantification is discussed in more de-
tail in the following paragraphs. In brief, we consider design of experiment methods to generate sets of uniform
random variables on the interval[0, 1]. These sets are mapped to the lower/upper bounds of the problem variables
and then the response functions are evaluated at the sample input points with the goal of characterizing the be-
havior of the response functions over the input parameter ranges of interest. Uncertainty quantification via LHS
sampling, in contrast, involves characterizing the uncertain input variables with probability distributions such as
normal, Weibull, triangular, etc., sampling from the input distributions, and propagating the input uncertainties
to obtain a cumulative distribution function on the output. There is significant overlap between design of ex-
periments and sampling. Often, both techniques can be used to obtain similar results about the behavior of the
response functions and about the relative importance of the input variables.

5.2 Design of Computer Experiments

Computer experiments are often different from physical experiments, such as those performed in agriculture,
manufacturing, or biology. In physical experiments, one often applies the sametreatmentor factor levelin an
experiment several times to get an understanding of the variability of the output when that treatment is applied.
For example, in an agricultural experiment, several fields (e.g., 8) may be subject to a low level of fertilizer and the
same number of fields may be subject to a high level of fertilizer to see if the amount of fertilizer has a significant

72 CHAPTER 5. DESIGN OF EXPERIMENTS CAPABILITIES

effect on crop output. In addition, one is often interested in the variability of the output within a treatment group:
is the variability of the crop yields in the low fertilizer group much higher than that in the high fertilizer group, or
not?

In physical experiments, the process we are trying to examine is stochastic: that is, the same treatment may result
in different outcomes. By contrast, in computer experiments, often we have a deterministic code. If we run the
code with a particular set of input parameters, the code will always produce the same output. There certainly
are stochastic codes, but the main focus of computer experimentation has been on deterministic codes. Thus, in
computer experiments we often do not have the need to do replicates (running the code with the exact same input
parameters several times to see differences in outputs). Instead, a major concern in computer experiments is to
create an experimental design which can sample a high-dimensional space in a representative way with a minimum
number of samples. The number of factors or parameters that we wish to explore in computer experiments is
usually much higher than physical experiments. In physical experiments, one may be interesting in varying a few
parameters, usually five or less, while in computer experiments we often have dozens of parameters of interest.
Choosing the levels of these parameters so that the samples adequately explore the input space is a challenging
problem. There are many experimental designs and sampling methods which address the issue of adequate and
representative sample selection. Classical experimental designs which are often used in physical experiments
include Central Composite designs and Box-Behnken designs.

There are many goals of running a computer experiment: one may want to explore the input domain or the design
space and get a better understanding of the range in the outputs for a particular domain. Another objective is to
determine which inputs have the most influence on the output, or how changes in the inputs change the output.
This is usually calledsensitivity analysis. Another goal is to compare the relative importance of model input
uncertainties on the uncertainty in the model outputs,uncertainty analysis. Yet another goal is to use the sampled
inputs points and their corresponding output to create aresponse surface approximationfor the computer code.
The response surface approximation (e.g., a polynomial regression model, a kriging model, a neural net) can then
be used to emulate the computer code. Constructing a response surface approximation is particularly important
for applications where running a computational model is extremely expensive: the computer model may take 10
or 20 hours to run on a high performance machine, whereas the response surface model may only take a few
seconds. Thus, one often optimizes the response surface model or uses it within a framework such as surrogate-
based optimization. Response surface models are also valuable in cases where the gradient (first derivative) and/or
Hessian (second derivative) information required by optimization techniques are either not available, expensive
to compute, or inaccurate because the derivatives are poorly approximated or the function evaluation is itself
noisy due to roundoff errors. Furthermore, many optimization methods require a good initial point to ensure
fast convergence or to converge to good solutions (e.g. for problems with multiple local minima). Under these
circumstances, a good design of computer experiment framework coupled with response surface approximations
can offer great advantages.

In addition to the sensitivity analysis, uncertainty analysis, and response surface modeling mentioned above, we
also may want to douncertainty quantificationon a computer model. Uncertainty quantification (UQ) refers
to taking a particular set of distributions on the inputs, and propagating them through the model to obtain a
distribution on the outputs. For example, if input parameter A follows a normal with mean 5 and variance 1, the
computer produces a random draw from that distribution. If input parameter B follows a weibull distribution with
alpha = 0.5 and beta = 1, the computer produces a random draw from that distribution. When all of the uncertain
variables have samples drawn from their input distributions, we run the model with the sampled values as inputs.
We do this repeatedly to build up a distribution of outputs. We can then use the cumulative distribution function
of the output to ask questions such as: what is the probability that the output is greater than 10? What is the 99th
percentile of the output?

Note that sampling-based uncertainty quantification and design of computer experiments are very similar.There
is significant overlapin the purpose and methods used for UQ and for DACE. We have attempted to delineate the

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

5.3. DDACE BACKGROUND 73

differences within DAKOTA as follows: we use the two methods, DDACE and FSUDACE, primarily for design
of experiments, where we are interested in understanding the main effects of parameters and where we want to
sample over an input domain to obtain values for constructing a response surface. We use the nondeterministic
sampling methods(nond sampling) for uncertainty quantification, where we are propagating specific input
distributions and interested in obtaining (for example) a cumulative distribution function on the output. If you
have a problem where you have no distributional information, we recommend starting with a design of experi-
ments approach. Note that DDACE and FSUDACE currently donot support distributional information: they take
an upper and lower bound for each uncertain input variable and sample within that. The uncertainty quantification
methods innond sampling (primarily Latin Hypercube sampling) offer the capability to sample from many
distributional types. The distinction between UQ and DACE is somewhat arbitrary: both approaches often can
yield insight about important parameters and both can determine sample points for response surface approxima-
tions.

5.3 DDACE Background

The DACE package includes both classical design of experiments methods [96] and stochastic sampling methods.
The classical design of experiments methods in DDACE are central composite design (CCD) and Box-Behnken
(BB) sampling. A grid-based sampling method also is available. The stochastic methods are orthogonal array
sampling [66], Monte Carlo (random) sampling, and Latin hypercube sampling. Note that the DDACE version
available through the DAKOTA interface only supports uniform distributions. DDACE does not currently support
enforcement of user-specified correlation structure among the variables.

The sampling methods in DDACE can be used alone or in conjunction with other methods. For example, DDACE
sampling can be used with both the surrogate-based optimization strategy and the optimization under uncertainty
strategy. See Figure10.5for an example of how the DDACE settings are used in DAKOTA.

More information on DDACE is available on the web at:http://csmr.ca.sandia.gov/projects/
ddace

The following sections provide more detail about the sampling methods available for design of experiments in
DDACE.

5.3.1 Central Composite Design

A Box-Wilson Central Composite Design, commonly called a central composite design (CCD), contains an em-
bedded factorial or fractional factorial design with center points that is augmented with a group of ’star points’
that allow estimation of curvature. If the distance from the center of the design space to a factorial point is±1
unit for each factor, the distance from the center of the design space to a star point is±α with | α |> 1. The
precise value of depends on certain properties desired for the design and on the number of factors involved. The
CCD design is specified in DAKOTA with the method commandddace central composite .

As an example, with a two input variables or factors, each having two levels, the factorial design is shown in Table
9.1.

With a CCD, the design above would be augmented with the following points, ifα = 1.3:

These points define a circle around the original factorial design.

Note that the number of samples points specified in a CCD,samples , is a function of the number of variables in
the problem:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

http://csmr.ca.sandia.gov/projects/ddace
http://csmr.ca.sandia.gov/projects/ddace

74 CHAPTER 5. DESIGN OF EXPERIMENTS CAPABILITIES

Table 5.1: Simple Factorial Design

Input 1 Input 2

-1 -1
-1 +1
+1 -1
+1 +1

Table 5.2: Additional Points to make the factorial design a CCD

Input 1 Input 2

0 +1.3
0 -1.3

1.3 0
-1.3 0
0 0

samples = 1 + 2 ∗NumV ar + 2NumV ar

5.3.2 Box-Behnken Design

The Box-Behnken design is similar to a Central Composite design, with some differences. The Box-Behnken
design is a quadratic design in that it does not contain an embedded factorial or fractional factorial design. In this
design the treatment combinations are at the midpoints of edges of the process space and at the center, as compared
with CCD designs where the extra points are placed at ’star points’ on a circle outside of the process space. Box-
Behken designs are rotatable (or near rotatable) and require 3 levels of each factor. The designs have limited
capability for orthogonal blocking compared to the central composite designs. Box-Behnken requires fewer runs
than CCD for 3 factors, but this advantage goes away as the number of factors increases. The Box-Behnken design
is specified in DAKOTA with the method commandddace box behnken .

Note that the number of samples points specified in a Box-Behnken design,samples , is a function of the number
of variables in the problem:

samples = 1 + 4 ∗NumV ar + (NumV ar − 1)/2

5.3.3 Orthogonal Array Designs

Orthogonal array (OA) sampling was independently considered by Owen and Tang. An orthogonal array sample
can be described as an 4-tuple(m,n, s, r), wherem is the number of sample points,n is the number of input
variables,s is the number of symbols, andr is the strength of the orthogonal array. The number of sample points,
m, must be a multiple of the number of symbols,s. The number of symbols refers to the number of levels per

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

5.3. DDACE BACKGROUND 75

input variable. The strength refers to the number of columns where we are guaranteed to see all the possibilities
an equal number of times.

For example, Table 9.3 shows an orthogonal array of strength 2 form = 8, with 7 variables:

Table 5.3: Orthogonal Array for Seven Variables

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7

0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1

If one picks any two columns, say the first and the third, note that each of the four possible rows we might see
there, 0 0, 0 1, 1 0, 1 1, appears exactly the same number of times, twice in this case.

DDACE creates orthogonal arrays of strength 2. Further, the OAs generated by DDACE do not treat the factor
levels as one fixed value (0 or 1 in the above example). Instead, once a level for a variable is determined in the
array, DDACE samples a random variable from within that level. The orthogonal array design is specified in
DAKOTA with the method commandddace oas .

The orthogonal array method in DDACE is the only method that allows for the calculation of main effects, speci-
fied with the commandmain effects . Main effects is a sensitivity analysis method which identifies the input
variables that have the most influence on the output. In main effects, the idea is to look at the mean of the response
function when variable A (for example) is at level 1 vs. when variable A is at level 2 or level 3. If these mean
responses of the output are statistically significantly different at different levels of variable A, this is an indication
that variable A has a significant effect on the response. The orthogonality of the columns is critical in performing
main effects analysis, since the column orthogonality means that the effects of the other variables ’cancel out’
when looking at the overall effect from one variable at its different levels. There are ways of developing orthog-
onal arrays to calculate higher order interactions, such as two-way interactions (what is the influence of Variable
A * Variable B on the output?), but this is not available in DDACE currently. At present, one way interactions
are supported in the calculation of orthogonal array main effects within DDACE. The main effects are presented
as a series of ANOVA tables. For each objective function and constraint, the decomposition of variance of that
objective or constraint is presented as a function of the input variables. The p-value in the ANOVA table is used
to indicate if the input factor is significant. The p-value is the probability that you would have obtained samples
more extreme than you did if the input factor has no effect on the response. For example, if you set a level of
significance at 0.05 for your p-value, and the actual p-value is 0.03, then the input factor has a significant effect
on the response.

5.3.4 Grid Design

In a grid design, a grid is placed over the input variable space. This is very similar to a multi-dimensional
parameter study where the samples are taken over a set of partitions on each variable (see Section4.5). The
main difference is that in grid sampling, a small random perturbation is added to each sample value so that the
grid points are not on a perfect grid. This is done to help capture certain features in the output such as periodic

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

76 CHAPTER 5. DESIGN OF EXPERIMENTS CAPABILITIES

functions. A purely structured grid, with the samples exactly on the grid points, has the disadvantage of not being
able to capture important features such as periodic functions with relatively high frequency (due to aliasing).
Adding a random perturbation to the grid samples helps remedy this problem.

Another disadvantage with grid sampling is that the number of sample points required depends exponentially on
the input dimensions. In grid sampling, the number of samples is the number of symbols (grid partitions) raised
to the number of variables. For example, if there are 2 variables, each with 5 partitions, the number of samples
would be52. In this case, doubling the number of variables squares the sample size. The grid design is specified
in DAKOTA with the method commandddace grid .

5.3.5 Monte Carlo Design

Monte Carlo designs simply involve pure Monte-Carlo random sampling from uniform distributions between the
lower and upper bounds on each of the input variables. Monte Carlo designs, specified byddace random , are
a way to generate a set of random samples over an input domain.

5.3.6 LHS Design

DDACE offers the capability to generate Latin Hypercube designs. For more information on Latin Hypercube
sampling, see Section6.2. Note that the version of LHS in DDACE generates uniform samples (uniform between
the variable bounds). The version of LHS offered with nondeterministic sampling can generate LHS samples
according to a number of distribution types, including normal, lognormal, weibull, beta, etc. To specify the
DDACE version of LHS, use the method commandddace lhs .

5.3.7 OA-LHS Design

DDACE offers a hybrid design which is combination of an orthogonal array and a Latin Hypercube sample.
This design is specified with the method commanddace oa lhs . This design has the advantages of both
orthogonality of the inputs as well as stratification of the samples.

5.4 FSUDace Background

The FSUDace package includes quasi-Monte Carlo sampling methods (Halton and Hammersley sequences) and
Centroidal Voronoi Tesselation sampling. All three methods generate sets of uniform random variables on the
interval [0, 1]. The quasi-Monte Carlo and CVT methods are designed with the goal of low discrepancy. Dis-
crepancy refers to the nonuniformity of the sample points within the unit hypercube. Low discrepancy sequences
tend to cover the unit hypercube reasonably uniformly. Quasi-Monte Carlo methods produce low discrepancy
sequences, especially if one is interested in the uniformity of projections of the point sets onto lower dimensional
faces of the hypercube (usually 1-D: how well do the marginal distributions approximate a uniform?) CVT does
very well volumetrically: it spaces the points fairly equally throughout the space, so that the points cover the re-
gion and are isotropically distributed with no directional bias in the point placement. There are various measures
of volumetric uniformity which take into account the distances between pairs of points, regularity measures, etc.
Note that CVT does not produce low-discrepancy sequences in lower dimensions, however: the lower-dimension
(such as 1-D) projections of CVT can have high discrepancy.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

5.5. SENSITIVITY ANALYSIS 77

The quasi-Monte Carlo sequences of Halton and Hammersley are deterministic sequences determined by a set of
prime bases. A Halton design is specified in DAKOTA with the method commandfsu quasi mc halton ,
and the Hammersley design is specified with the commandfsu quasi mc hammersley . For more details
about the input specification, see the Reference Manual. CVT points tend to arrange themselves in a pattern of
cells that are roughly the same shape. To produce CVT points, an almost arbitrary set of initial points is chosen,
and then an internal set of iterations is carried out. These iterations repeatedly replace the current set of sample
points by an estimate of the centroids of the corresponding Voronoi subregions [22]. A CVT design is specified
in DAKOTA with the method commandfsu cvt .

The methods in FSUDace are useful for design of experiments because they provide good coverage of the input
space, thus allowing global sensitivity analysis.

5.5 Sensitivity Analysis

Like parameter studies (see Chapter4), the DACE techniques are useful for characterizing the behavior of the
response functions of interest through the parameter ranges of interest. In addition to direct interrogation and
visualization of the sampling results, a number of techniques have been developed for assessing the parameters
which are most influential in the observed variability in the response functions. One example of this is the
well-known technique of scatter plots, in which the set of samples is projected down and plotted against one
parameter dimension, for each parameter in turn. Scatter plots with a uniformly distributed cloud of points indicate
parameters with little influence on the results, whereas scatter plots with a defined shape to the cloud indicate
parameters which are more significant. Related techniques include analysis of variance (ANOVA) [74] and main
effects analysis, in which the parameters which have the greatest influence on the results are identified from
sampling results. Scatter plots and ANOVA may be accessed through import of DAKOTA tabular results (see
Section15.3) into external statistical analysis programs such as S-plus, Minitab, etc.

Running any of the design of experiments or sampling methods allows the user to save the results in a tabular
data file, which then can be read into a spreadsheet or statistical package for further analysis. In addition, we have
provided some functions to help determine the most important variables.

We take the definition of uncertainty analysis from [88]: “The study of how uncertainty in the output of a model
can be apportioned to different sources of uncertainty in the model input.”

As a default, DAKOTA provides correlation analyses when running LHS. Correlation tables are printed with the
simple, partial, and rank correlations between inputs and outputs. These can be useful to get a quick sense of how
correlated the inputs are to each other, and how correlated various outputs are to inputs. The correlation analyses
are explained further in Chapter6.2.

We also have the capability to calculate sensitivity indices through Variance-based Decomposition (VBD). Variance-
based decomposition is a way of using sets of samples to understand how the variance of the output behaves, with
respect to each input variable. A larger value of the sensitivity index,Si (Si in the DAKOTA output), means
that the uncertainty in the input variablei has a larger effect on the variance of the output. More details on the
calculations and interpretation of the sensitivity indices can be found in [88]. VBD can be specified for any of
the sampling methods using the commandvariance based decomposition . Note that VBD is extremely
computationally intensive since replicated sets of sample values are evaluated. If the user specified a number of
samples,N , and a number of nondeterministic variables,M , variance-based decomposition requires the evalu-
ation ofN(M + 2) samples. To obtain sensitivity indices that are reasonably accurate, we recommend thatN ,
the number of samples, be at least one hundred and preferably several hundred or thousands. Because of the
computational cost, Variance-based decomposition is turned off as a default.

Finally, we have the capability to calculate a set of quality metrics for a particular input sample. These quality

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

78 CHAPTER 5. DESIGN OF EXPERIMENTS CAPABILITIES

metrics measure various aspects relating to the volumetric spacing of the samples: are the points equally spaced,
do they cover the region, are they isotropically distributed, do they have directional bias, etc.? The quality metrics
are explained in more detail in the Reference Manual.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 6

Uncertainty Quantification Capabilities

6.1 Overview

DAKOTA contains the DAKOTA/UQ software package for performing nondeterministic analysis. The DAKOTA/UQ
package is tightly-woven into the core DAKOTA software and is not available separately. The methods in
DAKOTA/UQ have been developed by a group of researchers at Sandia Labs, in conjunction with collaborators
in academia [44, 45, 27].

Uncertainty quantification methods (also referred to as nondeterministic analysis methods) in the DAKOTA/UQ
system involve the computation of probabilistic information about response functions based on sets of simulations
taken from the specified probability distributions for uncertain parameters. That is, these methods perform a
forward uncertainty propagation in which probability information for input parameters is mapped to probability
information for output response functions. Them functions in the DAKOTA response data set are interpreted as
m general response functions by the DAKOTA/UQ methods (with no specific interpretation of the functions as
for optimization and least squares).

Within the variables specification, uncertain variable descriptions are employed to define the parameter proba-
bility distributions (see Section11.3). The distribution types include: normal (Gaussian), lognormal, uniform,
loguniform, triangular, beta, gamma, gumbel, frechet, weibull, histogram, and interval. All uncertain variables
are treated as continuous variables in DAKOTA. When gradient and/or Hessian information is used in an uncer-
tainty assessment, derivative components are normally computed with respect to the active continuous variables,
or in this case, theuncertain variables.

6.2 Sampling Methods

Sampling techniques are selected using thenond sampling method selection. This method generates sets of
samples according to the probability distributions of the uncertain variables and maps them into corresponding sets
of response functions, where the number of samples is specified by thesamples integer specification. Means,
standard deviations, coefficients of variation (COVs), and 95% confidence intervals are computed for the response
functions. Probabilities and reliabilities may be computed forresponse levels specifications, and response
levels may be computed for eitherprobability levels or reliability levels specifications (refer
to the Method Commands chapter in the DAKOTA Reference Manual [29] for additional information).

80 CHAPTER 6. UNCERTAINTY QUANTIFICATION CAPABILITIES

Currently, traditional Monte Carlo (MC) and Latin hypercube sampling (LHS) are supported by DAKOTA and
are chosen by specifyingsample type asrandom or lhs . In Monte Carlo sampling, the samples are selected
randomly according to the user-specified probability distributions. Latin hypercube sampling is a stratified sam-
pling technique for which the range of each uncertain variable is divided intoNs segments of equal probability,
whereNs is the number of samples requested. The relative lengths of the segments are determined by the nature
of the specified probability distribution (e.g., uniform has segments of equal width, normal has small segments
near the mean and larger segments in the tails). For each of the uncertain variables, a sample is selected randomly
from each of these equal probability segments. TheseNs values for each of the individual parameters are then
combined in a shuffling operation to create a set ofNs parameter vectors with a specified correlation structure.
A feature of the resulting sample set is thatevery row and column in the hypercube of partitions has exactly one
sample. Since the total number of samples is exactly equal to the number of partitions used for each uncertain
variable, an arbitrary number of desired samples is easily accommodated (as compared to less flexible approaches
in which the total number of samples is a product or exponential function of the number of intervals for each
variable, i.e., many classical design of experiments methods).

Advantages of sampling-based methods include their relatively simple implementation and their independence
from the scientific disciplines involved in the analysis. The main drawback of these techniques is the large number
of function evaluations needed to generate converged statistics, which can render such an analysis computationally
very expensive, if not intractable, for real-world engineering applications. LHS techniques, in general, require
fewer samples than traditional Monte Carlo for the same accuracy in statistics, but they still can be prohibitively
expensive. For further information on the method and its relationship to other sampling techniques, one is referred
to the works by McKay, et al. [72], Iman and Shortencarier [63], and Helton and Davis [58]. Note that under
certain monotonicity conditions associated with the function to be sampled, Latin hypercube sampling provides a
more accurate estimate of the mean value than does random sampling. That is, given an equal number of samples,
the LHS estimate of the mean will have less variance than the mean value obtained through random sampling.

Figure6.1 demonstrates Latin hypercube sampling on a two-variable parameter space. Here, the range of both
parameters,x1 andx2, is [0, 1]. Also, for this example bothx1 andx2 have uniform statistical distributions.
For Latin hypercube sampling, the range of each parameter is divided intop “bins” of equal probability. For
parameters with uniform distributions, this corresponds to partitions of equal size. Forn design parameters,
this partitioning yields a total ofpn bins in the parameter space. Next,p samples are randomly selected in the
parameter space, with the following restrictions: (a) each sample is randomly placed inside a bin, and (b) for all
one-dimensional projections of thep samples and bins, there will be one and only one sample in each bin. In a
two-dimensional example such as that shown in Figure6.1, these LHS rules guarantee that only one bin can be
selected in each row and column. Forp = 4, there are four partitions in bothx1 andx2. This gives a total of
16 bins, of which four will be chosen according to the criteria described above. Note that there is more than one
possible arrangement of bins that meet the LHS criteria. The dots in Figure6.1represent the four sample sites in
this example, where each sample is randomly located in its bin. There is no restriction on the number of bins in
the range of each parameter, however, all parameters must have the same number of bins.

The actual algorithm for generating Latin hypercube samples is more complex than indicated by the description
given above. For example, the Latin hypercube sampling method implemented in the LHS code [95] takes into
account a user-specified correlation structure when selecting the sample sites. For more details on the implemen-
tation of the LHS algorithm, see Reference [95].

6.2.1 Uncertainty Quantification Example using Sampling Methods

The two-variable Textbook example problem (see Equation2.3) will be used to demonstrate the application of
sampling methods for uncertainty quantification where it is assumed thatx1 andx2 are uniform uncertain variables
on the interval[0, 1]. The DAKOTA input file for this problem is shown in Figure6.2. The number of samples to

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

6.2. SAMPLING METHODS 81

Figure 6.1: An example of Latin hypercube sampling with four bins in design parametersx1 andx2. The dots are
the sample sites.

perform is controlled with thesamples specification, the type of sampling algorithm to use is controlled with
the sample type specification, the levels used for computing statistics on the response functions is specified
with the response levels input, and theseed specification controls the sequence of the pseudo-random
numbers generated by the sampling algorithms. The input samples generated are shown in Figure6.3for the case
wheresamples = 5 andsamples = 10 for bothrandom (◦) andlhs (+) sample types.

Latin hypercube sampling ensures full coverage of the range of the input variables, which is often a problem with
Monte Carlo sampling when the number of samples is small. In the case ofsamples = 5 , poor stratification
is evident inx1 as four out of the five Monte Carlo samples are clustered in the range0.35 < x1 < 0.55, and
the regionsx1 < 0.3 and0.6 < x1 < 0.9 are completely missed. For the case wheresamples = 10 , some
clustering in the Monte Carlo samples is again evident with4 samples in the range0.5 < x1 < 0.55. In both
cases, the stratification with LHS is superior. The response function statistics returned by DAKOTA are shown
in Figure6.4. The first two blocks of output specify the response sample means and sample standard deviations
and confidence intervals for these statistics, as well as coefficients of variation. The last section of the output
defines CDF pairs (distribution cumulative was specified) for the response functions by presenting the
probability levels corresponding to the specified response levels (response levels were set and the default
compute probabilities was used). Alternatively, DAKOTA could have provided CCDF pairings, reliabil-
ity levels corresponding to prescribed response levels, or response levels corresponding to prescribed probability
or reliability levels.

In addition to obtaining statistical summary information of the type shown in Figure6.4, the results of LHS
sampling also include correlations. Four types of correlations are returned in the output: simple and partial “raw”
correlations, and simple and partial “rank” correlations. The raw correlations refer to correlations performed
on the actual input and output data. Rank correlations refer to correlations performed on the ranks of the data.
Ranks are obtained by replacing the actual data by the ranked values, which are obtained by ordering the data
in ascending order. For example, the smallest value in a set of input samples would be given a rank 1, the next

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

82 CHAPTER 6. UNCERTAINTY QUANTIFICATION CAPABILITIES

method, \
nond_sampling, \

samples = 10 seed = 98765 \
response_levels = 0.1 0.2 0.6 \

0.1 0.2 0.6 \
0.1 0.2 0.6 \

sample_type lhs \
distribution cumulative

variables, \
uniform_uncertain = 2 \

uuv_lower_bounds = 0. 0. \
uuv_upper_bounds = 1. 1. \
uuv_descriptor = ’x1’ ’x2’

interface, \
system asynch evaluation_concurrency = 5 \

analysis_driver = ’text_book’

responses, \
num_response_functions = 3 \
no_gradients \
no_hessians

Figure 6.2: DAKOTA input file for UQ example using LHS sampling.

Figure 6.3: Distribution of input sample points for random (◦) and lhs (+) sampling forsamples=5 and10 .

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

6.2. SAMPLING METHODS 83

Statistics based on 10 samples:

Moments for each response function:
response_fn_1: Mean = 3.83840e-01 Std. Dev. = 4.02815e-01

Coeff. of Variation = 1.04944e+00
response_fn_2: Mean = 7.47987e-02 Std. Dev. = 3.46861e-01

Coeff. of Variation = 4.63726e+00
response_fn_3: Mean = 7.09462e-02 Std. Dev. = 3.41532e-01

Coeff. of Variation = 4.81397e+00

95% confidence intervals for each response function:
response_fn_1: Mean = (9.56831e-02, 6.71997e-01),

Std Dev = (2.77071e-01, 7.35384e-01)
response_fn_2: Mean = (-1.73331e-01, 3.22928e-01),

Std Dev = (2.38583e-01, 6.33233e-01)
response_fn_3: Mean = (-1.73371e-01, 3.15264e-01),

Std Dev = (2.34918e-01, 6.23505e-01)

Probabilities for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:

Response Level Probability Level Reliability Index
-------------- ----------------- -----------------

1.0000000000e-01 3.0000000000e-01
2.0000000000e-01 5.0000000000e-01
6.0000000000e-01 7.0000000000e-01

Cumulative Distribution Function (CDF) for response_fn_2:
Response Level Probability Level Reliability Index
-------------- ----------------- -----------------

1.0000000000e-01 5.0000000000e-01
2.0000000000e-01 7.0000000000e-01
6.0000000000e-01 9.0000000000e-01

Cumulative Distribution Function (CDF) for response_fn_3:
Response Level Probability Level Reliability Index
-------------- ----------------- -----------------

1.0000000000e-01 6.0000000000e-01
2.0000000000e-01 6.0000000000e-01
6.0000000000e-01 9.0000000000e-01

Figure 6.4: DAKOTA response function statistics from UQ sampling example.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

84 CHAPTER 6. UNCERTAINTY QUANTIFICATION CAPABILITIES

Simple Correlation Matrix between input and output:
x1 x2 response_fn_1 response_fn_2 response_fn_3

x1 1.00000e+00
x2 -7.22482e-02 1.00000e+00

response_fn_1 -7.04965e-01 -6.27351e-01 1.00000e+00
response_fn_2 8.61628e-01 -5.31298e-01 -2.60486e-01 1.00000e+00
response_fn_3 -5.83075e-01 8.33989e-01 -1.23374e-01 -8.92771e-01 1.00000e+00

Partial Correlation Matrix between input and output:
response_fn_1 response_fn_2 response_fn_3

x1 -9.65994e-01 9.74285e-01 -9.49997e-01
x2 -9.58854e-01 -9.26578e-01 9.77252e-01

Simple Rank Correlation Matrix between input and output:
x1 x2 response_fn_1 response_fn_2 response_fn_3

x1 1.00000e+00
x2 -6.66667e-02 1.00000e+00

response_fn_1 -6.60606e-01 -5.27273e-01 1.00000e+00
response_fn_2 8.18182e-01 -6.00000e-01 -2.36364e-01 1.00000e+00
response_fn_3 -6.24242e-01 7.93939e-01 -5.45455e-02 -9.27273e-01 1.00000e+00

Partial Rank Correlation Matrix between input and output:
response_fn_1 response_fn_2 response_fn_3

x1 -8.20657e-01 9.74896e-01 -9.41760e-01
x2 -7.62704e-01 -9.50799e-01 9.65145e-01

Figure 6.5: Correlation results using LHS Sampling.

smallest value a rank 2, etc. Rank correlations are useful when some of the inputs and outputs differ greatly in
magnitude: then it is easier to compare if the smallest ranked input sample is correlated with the smallest ranked
output, for example.

Correlations are always calculated between two sets of sample data. One can calculate correlation coefficients
between two input variables, between an input and an output variable (probably the most useful), or between two
output variables. The simple correlation coefficients presented in the output tables are Pearson’s correlation coef-

ficient, which is defined for two variablesx andy as:Corr(x, y) =
∑

i
(xi−x̄)(yi−ȳ)√∑

i
(xi−x̄)2

∑
i
(yi−ȳ)2

. Partial correlation

coefficients are similar to simple correlations, but a partial correlation coefficient between two variables measures
their correlation while adjusting for the effects of the other variables. For example, say one has a problem with
two inputs and one output; and the two inputs are highly correlated. Then the correlation of the second input and
the output may be very low after accounting for the effect of the first input. The rank correlations in DAKOTA are
obtained using Spearman’s rank correlation. Spearman’s rank is the same as the Pearson correlation coefficient
except that it is calculated on the rank data.

Figure6.5 shows an example of the correlation output provided by DAKOTA for the input file in Figure6.2.
Note that these correlations are presently only available when one specifies lhs as the sampling method under
nondsampling. Also note that the simple and partial correlations should be similar in most cases (in terms of
values of correlation coefficients). This is because we use a default “restricted pairing” method in the LHS routine
which forces near-zero correlation amongst uncorrelated inputs.

Finally, note that the LHS package can be used in design of experiments mode by including theall variables

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

6.3. RELIABILITY METHODS 85

flag in the method specification section of the DAKOTA input file. Then, instead of iterating on only the uncertain
variables, the LHS package will sample on all of the continuous variables, where continuous design and contin-
uous state variables are treated as having uniform probability distributions within their upper and lower bounds
and any uncertain variables are sampled within their specified probability distributions.

6.3 Reliability Methods

Reliability methods provide an alternative approach to uncertainty quantification which can be less computa-
tionally demanding than sampling techniques. Reliability methods for uncertainty quantification are based on
probabilistic approaches that compute approximate response function distribution statistics based on specified un-
certain variable distributions. These response statistics include response mean, response standard deviation, and
cumulative or complementary cumulative distribution functions (CDF/CCDF). These methods are often more ef-
ficient at computing statistics in the tails of the response distributions (events with low probability) than sampling
based approaches since the number of samples required to resolve a low probability can be prohibitive.

The methods all answer the fundamental question: “Given a set of uncertain input variables,X, and a scalar
response function,g, what is the probability that the response function is below or above a certain level,z̄?” The
former can be written asP [g(X) ≤ z̄] = Fg(z̄) whereFg(z̄) is the cumulative distribution function (CDF) of the
uncertain responseg(X) over a set of response levels. The latter can be written asP [g(X) > z̄] and defines the
complementary cumulative distribution function (CCDF).

This probability calculation involves a multi-dimensional integral over an irregularly shaped domain of interest,
D, whereg(X) < z as displayed in Figure6.6for the case of two variables. The reliability methods all involve the
transformation of the user-specified uncertain variables,X, with probability density function,p(x1, x2), which
can be non-normal and correlated, to a space of independent Gaussian random variables,u, possessing a mean
value of zero and unit variance (i.e., standard normal variables). The region of interest,D, is also mapped to
the transformed space to yield,Du , whereg(U) < z as shown in Figure6.7. The Nataf transformation [21],
which is identical to the Rosenblatt transformation [87] in the case of independent random variables, is used in
DAKOTA to accomplish this mapping. This transformation is performed to make the probability calculation more
tractable. In the transformed space, probability contours are circular in nature as shown in Figure6.7 unlike in
the original uncertain variable space, Figure6.6. Also, the multi-dimensional integrals can be approximated by
simple functions of a single parameter,β, called the reliability index.β is the minimum Euclidean distance from
the origin in the transformed space to the response surface. This point is also known as the most probable point
(MPP) of failure. Note, however, the methodology is equally applicable for generic functions, not simply those
corresponding to failure criteria; this nomenclature is due to the origin of these methods within the disciplines of
structural safety and reliability.

6.3.1 Mean Value

The Mean Value method (MV, also known as MVFOSM in [56]) is the simplest, least-expensive reliability method
because it estimates the response means, response standard deviations, and all CDF/CCDF response-probability-
reliability levels from a single evaluation of response functions and their gradients at the uncertain variable means.
This approximation can have acceptable accuracy when the response functions are nearly linear and their distri-
butions are approximately Gaussian, but can have poor accuracy in other situations. The expressions for approx-
imate response meanµg, approximate response standard deviationσg, response target to approximate probabil-
ity/reliability level mapping (̄z → p, β), and probability/reliability target to approximate response level mapping
(p̄, β̄ → z) are

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

86 CHAPTER 6. UNCERTAINTY QUANTIFICATION CAPABILITIES

Figure 6.6: Graphical depiction of calculation of cumulative distribution function in the original uncertain variable
space.

Figure 6.7: Graphical depiction of integration for the calculation of cumulative distribution function in the trans-
formed uncertain variable space.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

6.3. RELIABILITY METHODS 87

µg = g(µx) (6.1)

σg =
∑
i

∑
j

Cov(i, j)
dg

dxi
(µx)

dg

dxj
(µx) (6.2)

βcdf =
µg − z̄

σg
(6.3)

βccdf =
z̄ − µg
σg

(6.4)

z = µg − σgβ̄cdf (6.5)

z = µg + σgβ̄ccdf (6.6)

respectively, wherex are the uncertain values in the space of the original uncertain variables (“x-space”),g(x)
is the limit state function (the response function for which probability-response level pairs are needed), andβcdf
andβccdf are the CDF and CCDF reliability indices, respectively.

With the introduction of second-order limit state information, MVSOSM calculates a second-order mean as

µg = g(µx) +
1
2

∑
i

∑
j

Cov(i, j)
d2g

dxidxj
(µx) (6.7)

This is commonly combined with a first-order variance (Equation6.2), since second-order variance involves
higher order distribution moments (skewness, kurtosis) [56] which are often unavailable.

The first-order CDF probabilityp(g ≤ z), first-order CCDF probabilityp(g > z), βcdf , andβccdf are related to
one another through

p(g ≤ z) = Φ(−βcdf) (6.8)

p(g > z) = Φ(−βccdf) (6.9)

βcdf = −Φ−1(p(g ≤ z)) (6.10)

βccdf = −Φ−1(p(g > z)) (6.11)

βcdf = −βccdf (6.12)

p(g ≤ z) = 1− p(g > z) (6.13)

whereΦ() is the standard normal cumulative distribution function. A common convention in the literature is to
defineg in such a way that the CDF probability for a response levelz of zero (i.e.,p(g ≤ 0)) is the response metric
of interest. DAKOTA is not restricted to this convention and is designed to support CDF or CCDF mappings for
general response, probability, and reliability level sequences.

6.3.2 MPP Search Methods

All other reliability methods solve an equality-constrained nonlinear optimization problem to compute a most
probable point (MPP) and then integrate about this point to compute probabilities. The MPP search is performed
in uncorrelated standard normal space (“u-space”) since it simplifies the probability integration: the distance of
the MPP from the origin has the meaning of the number of input standard deviations separating the mean response

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

88 CHAPTER 6. UNCERTAINTY QUANTIFICATION CAPABILITIES

from a particular response threshold. The transformation from correlated non-normal distributions (x-space) to
uncorrelated standard normal distributions (u-space) is denoted asu = T (x) with the reverse transformation
denoted asx = T−1(u). These transformations are nonlinear in general, and possible approaches include the
Rosenblatt [87], Nataf [21], and Box-Cox [9] transformations. The nonlinear transformations may also be lin-
earized, and common approaches for this include the Rackwitz-Fiessler [83] two-parameter equivalent normal and
the Chen-Lind [14] and Wu-Wirsching [106] three-parameter equivalent normals. DAKOTA employs the Nataf
nonlinear transformation which occurs in the following two steps. To transform between the original correlated
x-space variables and correlated standard normals (“z-space”), the CDF matching condition is used:

Φ(zi) = F (xi) (6.14)

whereF () is the cumulative distribution function of the original probability distribution. Then, to transform
between correlated z-space variables and uncorrelated u-space variables, the Cholesky factorL of a modified
correlation matrix is used:

z = Lu (6.15)

where the original correlation matrix for non-normals in x-space has been modified to represent the corresponding
correlation in z-space [21].

The forward reliability analysis algorithm of computing CDF/CCDF probability/reliability levels for specified
response levels is called the reliability index approach (RIA), and the inverse reliability analysis algorithm of
computing response levels for specified CDF/CCDF probability/reliability levels is called the performance mea-
sure approach (PMA) [97]. The differences between the RIA and PMA formulations appear in the objective
function and equality constraint formulations used in the MPP searches. For RIA, the MPP search for achieving
the specified response levelz̄ is formulated as computing the minimum distance in u-space from the origin to the
z̄ contour of the limit state response function:

minimize uTu

subject to G(u) = z̄ (6.16)

and for PMA, the MPP search for achieving the specified reliability/probability levelβ̄, p̄ is formulated as com-
puting the minimum/maximum response function value corresponding to a prescribed distance from the origin in
u-space:

minimize ±G(u)
subject to uTu = β̄2 (6.17)

whereu is a vector centered at the origin in u-space andg(x) ≡ G(u) by definition. In the RIA case, the
optimal MPP solutionu∗ defines the reliability index fromβ = ±‖u∗‖2, which in turn defines the CDF/CCDF
probabilities (using Equations6.8-6.9 in the case of first-order integration). The sign ofβ is defined by

G(u∗) > G(0) : βcdf < 0, βccdf > 0 (6.18)

G(u∗) < G(0) : βcdf > 0, βccdf < 0 (6.19)

whereG(0) is the median limit state response computed at the origin in u-space (whereβcdf = βccdf = 0 and
first-orderp(g ≤ z) = p(g > z) = 0.5). In the PMA case, the sign applied toG(u) (equivalent to minimizing or
maximizingG(u)) is similarly defined bȳβ

β̄cdf < 0, β̄ccdf > 0 : maximize G(u) (6.20)

β̄cdf > 0, β̄ccdf < 0 : minimize G(u) (6.21)

and the limit state at the MPP (G(u∗)) defines the desired response level result.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

6.3. RELIABILITY METHODS 89

Limit state approximations

There are a variety of algorithmic variations that are available for use within RIA/PMA reliability analyses. First,
one may select among several different limit state approximations that can be used to reduce computational ex-
pense during the MPP searches. Local, multipoint, and global approximations of the limit state are possible. [27]
investigated local first-order limit state approximations, and [28] investigated local second-order and multipoint
approximations. These techniques include:

1. a single Taylor series per response/reliability/probability level in x-space centered at the uncertain variable
means. The first-order approach is commonly known as the Advanced Mean Value (AMV) method:

g(x) ∼= g(µx) +∇xg(µx)T (x− µx) (6.22)

and the second-order approach has been named AMV2:

g(x) ∼= g(µx) +∇xg(µx)T (x− µx) +
1
2
(x− µx)T∇2

xg(µx)(x− µx) (6.23)

2. same as AMV/AMV2, except that the Taylor series is expanded in u-space. The first-order option has been
termed the u-space AMV method:

G(u) ∼= G(µu) +∇uG(µu)T (u− µu) (6.24)

whereµu = T (µx) and is nonzero in general, and the second-order option has been named the u-space
AMV 2 method:

G(u) ∼= G(µu) +∇uG(µu)T (u− µu) +
1
2
(u− µu)T∇2

uG(µu)(u− µu) (6.25)

3. an initial Taylor series approximation in x-space at the uncertain variable means, with iterative expansion
updates at each MPP estimate (x∗) until the MPP converges. The first-order option is commonly known as
AMV+:

g(x) ∼= g(x∗) +∇xg(x∗)T (x− x∗) (6.26)

and the second-order option has been named AMV2+:

g(x) ∼= g(x∗) +∇xg(x∗)T (x− x∗) +
1
2
(x− x∗)T∇2

xg(x
∗)(x− x∗) (6.27)

4. same as AMV+/AMV2+, except that the expansions are performed in u-space. The first-order option has
been termed the u-space AMV+ method.

G(u) ∼= G(u∗) +∇uG(u∗)T (u− u∗) (6.28)

and the second-order option has been named the u-space AMV2+ method:

G(u) ∼= G(u∗) +∇uG(u∗)T (u− u∗) +
1
2
(u− u∗)T∇2

uG(u∗)(u− u∗) (6.29)

5. a multipoint approximation in x-space. This approach involves a Taylor series approximation in intermedi-
ate variables where the powers used for the intermediate variables are selected to match information at the

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

90 CHAPTER 6. UNCERTAINTY QUANTIFICATION CAPABILITIES

current and previous expansion points. Based on the two-point exponential approximation concept (TPEA,
[38]), the two-point adaptive nonlinearity approximation (TANA-3, [109]) approximates the limit state as:

g(x) ∼= g(x2) +
n∑
i=1

∂g

∂xi
(x2)

x1−pi

i,2

pi
(xpi

i − xpi

i,2) +
1
2
ε(x)

n∑
i=1

(xpi

i − xpi

i,2)
2 (6.30)

wheren is the number of uncertain variables and:

pi = 1 + ln

[
∂g
∂xi

(x1)
∂g
∂xi

(x2)

]/
ln
[
xi,1
xi,2

]
(6.31)

ε(x) =
H∑n

i=1(x
pi

i − xpi

i,1)2 +
∑n
i=1(x

pi

i − xpi

i,2)2
(6.32)

H = 2

[
g(x1)− g(x2)−

n∑
i=1

∂g

∂xi
(x2)

x1−pi

i,2

pi
(xpi

i,1 − xpi

i,2)

]
(6.33)

andx2 andx1 are the current and previous MPP estimates in x-space, respectively. Prior to the availability
of two MPP estimates, x-space AMV+ is used.

6. a multipoint approximation in u-space. The u-space TANA-3 approximates the limit state as:

G(u) ∼= G(u2) +
n∑
i=1

∂G

∂ui
(u2)

u1−pi

i,2

pi
(upi

i − upi

i,2) +
1
2
ε(u)

n∑
i=1

(upi

i − upi

i,2)
2 (6.34)

where:

pi = 1 + ln

[
∂G
∂ui

(u1)
∂G
∂ui

(u2)

]/
ln
[
ui,1
ui,2

]
(6.35)

ε(u) =
H∑n

i=1(u
pi

i − upi

i,1)2 +
∑n
i=1(u

pi

i − upi

i,2)2
(6.36)

H = 2

[
G(u1)−G(u2)−

n∑
i=1

∂G

∂ui
(u2)

u1−pi

i,2

pi
(upi

i,1 − upi

i,2)

]
(6.37)

andu2 andu1 are the current and previous MPP estimates in u-space, respectively. Prior to the availability
of two MPP estimates, u-space AMV+ is used.

7. the MPP search on the original response functions without the use of any approximations. Combining this
option with first-order and second-order integration approaches (see next section) results in the traditional
first-order and second-order reliability methods (FORM and SORM).

The Hessian matrices in AMV2 and AMV2+ may be available analytically, estimated numerically, or approxi-
mated through quasi-Newton updates. The selection between x-space or u-space for performing approximations
depends on where the approximation will be more accurate, since this will result in more accurate MPP esti-
mates (AMV, AMV2) or faster convergence (AMV+, AMV2+, TANA). Since this relative accuracy depends on
the forms of the limit stateg(x) and the transformationT (x) and is therefore application dependent in general,
DAKOTA supports both options. A concern with approximation-based iterative search methods (i.e., AMV+,
AMV 2+ and TANA) is the robustness of their convergence to the MPP. It is possible for the MPP iterates to os-
cillate or even diverge. However, to date, this occurrence has been relatively rare, and DAKOTA contains checks

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

6.3. RELIABILITY METHODS 91

that monitor for this behavior. Another concern with TANA is numerical safeguarding (e.g., the possibility of
raising negativexi or ui values to nonintegralpi exponents in Equations6.30, 6.32-6.34, and6.36-6.37). Safe-
guarding involves offseting negativexi or ui and, for potential numerical difficulties with the logarithm ratios in
Equations6.31and6.35, reverting to either the linear (pi = 1) or reciprocal (pi = −1) approximation based on
which approximation has lower error in∂g∂xi

(x1) or ∂G∂ui
(u1).

Probability integrations

The second algorithmic variation involves the integration approach for computing probabilities at the MPP, which
can be selected to be first-order (Equations6.8-6.9) or second-order integration. Second-order integration involves
applying a curvature correction [10, 60, 61]. Breitung applies a correction based on asymptotic analysis [10]:

p = Φ(−βp)
n−1∏
i=1

1√
1 + βpκi

(6.38)

whereκi are the principal curvatures of the limit state function (the eigenvalues of an orthonormal transformation
of∇2

uG, taken positive for a convex limit state) andβp ≥ 0 (a CDF or CCDF probability correction is selected to
obtain the correct sign forβp). An alternate correction in [60] is consistent in the asymptotic regime (βp → ∞)
but does not collapse to first-order integration forβp = 0:

p = Φ(−βp)
n−1∏
i=1

1√
1 + ψ(−βp)κi

(6.39)

whereψ() = φ()
Φ() andφ() is the standard normal density function. [61] applies further corrections to Equation6.39

based on point concentration methods. At this time, all three approaches are available within the code, but the
Breitung correction is used by default (switching the correction is not currently supported in the input specification
and requires minor source modification and recompile).

6.3.3 Uncertainty Quantification Example using Reliability Analysis

In summary, the user can choose to perform either forward (RIA) or inverse (PMA) mappings when performing
a reliability analysis. With either approach, there are a variety of methods from which to choose in terms of limit
state approximations (MVFOSM, MVSOSM, x-/u-space AMV, x-/u-space AMV2, x-/u-space AMV+, x-/u-space
AMV 2+, x-/u-space TANA, and FORM/SORM), probability integrations (first-order or second-order), limit state
Hessian selection (analytic, finite difference, BFGS, or SR1), and MPP optimization algorithm (SQP or NIP)
selections.

All reliability methods output approximate values of the CDF/CCDF response-probability-reliability levels for
prescribed response levels (RIA) or prescribed probability or reliability levels (PMA). In addition, the MV meth-
ods additionally output estimates of the mean and standard deviation of the response functions along with impor-
tance factors for each of the uncertain variables in the case of independent random variables.

This example quantifies the uncertainty in the “log ratio” response function:

g(x1, x2) =
x1

x2
(6.40)

by computing approximate response statistics using reliability analysis to determine the response cumulative
distribution function:

P [g(x1, x2) < z̄] (6.41)

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

92 CHAPTER 6. UNCERTAINTY QUANTIFICATION CAPABILITIES

strategy, \
single_method graphics

method, \
nond_reliability \

mpp_search no_approx \
response_levels = .4 .5 .55 .6 .65 .7 \

.75 .8 .85 .9 1. 1.05 1.15 1.2 1.25 1.3 \
1.35 1.4 1.5 1.55 1.6 1.65 1.7 1.75 \

variables, \
lognormal_uncertain = 2 \

lnuv_means = 1. 1 \
lnuv_std_deviations = 0.5 0.5 \
lnuv_descriptor = ’TF1ln’ ’TF2ln’ \

uncertain_correlation_matrix = 1 0.3 \
0.3 1

interface, \
system asynch \

analysis_driver = ’log_ratio’

responses, \
num_response_functions = 1 \
numerical_gradients \

method_source dakota \
interval_type central \
fd_gradient_step_size = 1.e-4 \

no_hessians

Figure 6.8: DAKOTA input file for Reliability UQ example using FORM.

whereX1 andX2 are identically distributed lognormal random variables with means of1, standard deviations of
0.5 , and correlation coefficient of0.3 .

A DAKOTA input file showing RIA using FORM (option 7 in limit state approximations combined with first-
order integration) is listed in Figure6.8. The user first specifies thenond reliability method, followed by
the MPP search approach and integration order. In this example, we specifympp search no approx and
utilize the default first-order integration to select FORM. Finally, the user specifies response levels or probabil-
ity/reliability levels to determine if the problem will be solved using an RIA approach or a PMA approach. In the
example figure of6.8, we use RIA by specifying a range ofresponse levels for the problem. The resulting
output for this input is shown in Figure6.9, with probability and reliability levels listed for each response level.
Figure6.10shows that FORM compares favorably to an analytic solution for this problem (note: the response
levels differ from those shown in Figure6.9).

If the user specifiesnond reliability as a method with no additional specification on how to do the MPP
search, then no MPP search is done: the Mean Value method is used. The MV results are shown in Figure6.11
and consist of approximate mean and standard deviation of the response, the importance factors for each uncertain

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

6.3. RELIABILITY METHODS 93

Cumulative Distribution Function (CDF) for response_fn_1:
Response Level Probability Level Reliability Index
-------------- ----------------- -----------------

4.0000000000e-01 4.7624085962e-02 1.6683404020e+00
5.0000000000e-01 1.0346525475e-01 1.2620507942e+00
5.5000000000e-01 1.3818404972e-01 1.0885143628e+00
6.0000000000e-01 1.7616275822e-01 9.3008801339e-01
6.5000000000e-01 2.1641741368e-01 7.8434989943e-01
7.0000000000e-01 2.5803428381e-01 6.4941748143e-01
7.5000000000e-01 3.0020938124e-01 5.2379840558e-01
8.0000000000e-01 3.4226491013e-01 4.0628960782e-01
8.5000000000e-01 3.8365052982e-01 2.9590705956e-01
9.0000000000e-01 4.2393548232e-01 1.9183562480e-01
1.0000000000e+00 5.0000000000e-01 6.8682233460e-12
1.0500000000e+00 5.3539344228e-01 -8.8834907167e-02
1.1500000000e+00 6.0043460094e-01 -2.5447217462e-01
1.2000000000e+00 6.3004131827e-01 -3.3196278078e-01
1.2500000000e+00 6.5773508987e-01 -4.0628960782e-01
1.3000000000e+00 6.8356844630e-01 -4.7770089473e-01
1.3500000000e+00 7.0761025532e-01 -5.4641676380e-01
1.4000000000e+00 7.2994058691e-01 -6.1263331274e-01
1.5000000000e+00 7.6981945355e-01 -7.3825238860e-01
1.5500000000e+00 7.8755158269e-01 -7.9795460350e-01
1.6000000000e+00 8.0393505584e-01 -8.5576118635e-01
1.6500000000e+00 8.1906005158e-01 -9.1178881995e-01
1.7000000000e+00 8.3301386860e-01 -9.6614373461e-01
1.7500000000e+00 8.4588021938e-01 -1.0189229206e+00

Figure 6.9: Output from Reliability UQ example using FORM.

Figure 6.10: Comparison of the cumulative distribution function (CDF) computed by FORM (+ marks) and the
exact CDF forg(x1, x2) = x1

x2

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

94 CHAPTER 6. UNCERTAINTY QUANTIFICATION CAPABILITIES

MV Statistics for response_fn_1:
Approximate Mean Response = 1.0000000000e+00
Approximate Standard Deviation of Response = 5.9160798127e-01
Importance Factors not available.

Cumulative Distribution Function (CDF) for response_fn_1:
Response Level Probability Level Reliability Index
-------------- ----------------- -----------------

4.0000000000e-01 1.5524721837e-01 1.0141851006e+00
5.0000000000e-01 1.9901236093e-01 8.4515425050e-01
5.5000000000e-01 2.2343641149e-01 7.6063882545e-01
6.0000000000e-01 2.4948115037e-01 6.7612340040e-01
6.5000000000e-01 2.7705656603e-01 5.9160797535e-01
7.0000000000e-01 3.0604494093e-01 5.0709255030e-01
7.5000000000e-01 3.3630190949e-01 4.2257712525e-01
8.0000000000e-01 3.6765834596e-01 3.3806170020e-01
8.5000000000e-01 3.9992305332e-01 2.5354627515e-01
9.0000000000e-01 4.3288618783e-01 1.6903085010e-01
1.0000000000e+00 5.0000000000e-01 0.0000000000e+00
1.0500000000e+00 5.3367668035e-01 -8.4515425050e-02
1.1500000000e+00 6.0007694668e-01 -2.5354627515e-01
1.2000000000e+00 6.3234165404e-01 -3.3806170020e-01
1.2500000000e+00 6.6369809051e-01 -4.2257712525e-01
1.3000000000e+00 6.9395505907e-01 -5.0709255030e-01
1.3500000000e+00 7.2294343397e-01 -5.9160797535e-01
1.4000000000e+00 7.5051884963e-01 -6.7612340040e-01
1.5000000000e+00 8.0098763907e-01 -8.4515425050e-01
1.5500000000e+00 8.2372893005e-01 -9.2966967555e-01
1.6000000000e+00 8.4475278163e-01 -1.0141851006e+00
1.6500000000e+00 8.6405064339e-01 -1.0987005257e+00
1.7000000000e+00 8.8163821351e-01 -1.1832159507e+00
1.7500000000e+00 8.9755305196e-01 -1.2677313758e+00

Figure 6.11: Output from Reliability UQ example using MV.

variable, and approximate probability/reliability levels for the prescribed response levels that have been inferred
from the approximate mean and standard deviation (using Equations6.3 and6.8). It is evident that the statistics
are considerably different from the fully converged FORM results; however, these rough approximations are also
much less expensive to calculate. The importance factors are a measure of the sensitivity of the response func-
tion(s) to the uncertain input variables, but in this case, are not separable due to the presence of input correlation
coefficients. The importance factors can be viewed as an extension of linear sensitivity analysis combining de-
terministic gradient information with input uncertainty information,i.e. input variable standard deviations. The
accuracy of the importance factors is contingent of the validity of the linear approximation used to approximate
the true response functions.

Additional reliability analysis and design results are provided in Sections21.5-21.10.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

6.4. POLYNOMIAL CHAOS METHODS 95

6.4 Polynomial Chaos Methods

The objective of these techniques is to characterize the response of systems whose governing equations involve
stochastic coefficients. The development of these techniques mirrors that of deterministic finite element analysis
through the utilization of the concepts of projection, orthogonality, and weak convergence. The polynomial chaos
expansion is based on a multidimensional Hermite approximation in standard normal random variables.

The coefficients for the terms in the polynomial chaos expansion are determined either from a coupled set of
equations solved externally from the analysis package or from a set of statistical estimators known to converge to
the Fourier coefficients, albeit at a rate that is unknown a priori. In DAKOTA, the latter approach is implemented
where both direct Monte Carlo sampling and Latin hypercube sampling are available to serve as the estimators of
the Fourier coefficients. A distinguishing feature of the methodology is that the solution series expansions are ex-
pressed as random processes, and not merely as statistics as is the case for many nondeterministic methodologies.
This makes the technique particularly attractive for use in multi-physics applications which link different analysis
packages. A more detailed explanation of the procedure can be found in Ghanem, et al. [44], [45].

6.4.1 Uncertainty Quantification Example using Polynomial Chaos

A typical DAKOTA input file for performing an uncertainty quantification using polynomial chaos expansions
is shown in Figure6.12. The analysis involves the use of asurrogate model (defined in the ‘UQM’ model
specification) in order to manage the construction of a Hermite polynomial global approximation built using 250
LHS samples of the truth modellog ratio (defined in the ‘DACE’ method and ‘I1 ’ interface specifications).

After the Hermite polynomial surrogate model has been constructed, thenond polynomial chaos method
performs a UQ analysis using 1000 LHS samples on the surrogate to compute estimates of the mean, standard
deviation, coefficient of variation, and 95% confidence interval for the response function and the probability of
exceeding theresponse levels value. As shown in Figure6.13, the method outputs these quantities in
addition to the approximate coefficients in the polynomial chaos expansion for the response function. It should be
noted that only standard normal random variables are supported innond polynomial chaos at this time.

6.5 Epistemic Nondeterministic Methods

Uncertainty quantification is often used as part of the risk assessment of performance, reliability, and safety of
engineered systems. Increasingly, uncertainty is separated into two categories for analysis purposes: aleatory
and epistemic uncertainty [76]. Aleatory uncertainty is also referred to as variability, irreducible or inherent
uncertainty, or uncertainty due to chance. Examples of aleatory uncertainty include the height of individuals
in a population, or the temperature in a processing environment. Aleatory uncertainty is usually modeled with
probability distributions, and sampling methods such as Latin Hypercube sampling in DAKOTA can be used to
model aleatory uncertainty. In contrast, epistemic uncertainty refers to lack of knowledge or lack of information
about a particular aspect of the simulation model, including the system and environment being modeled. An
increase in knowledge or information relating to epistemic uncertainty will lead to a reduction in the predicted
uncertainty of the system response or performance. For epistemic uncertain variables, typically one does not
know enough to specify a probability distribution on a variable. Epistemic uncertainty is referred to as subjective,
reducible, or lack of knowledge uncertainty. Examples of epistemic uncertainty include little or no experimental
data for a fixed but unknown physical parameter, incomplete understanding of complex physical phenomena,
uncertainty about the correct model form to use, etc.

There are many approaches which have been developed to model epistemic uncertainty, including fuzzy set the-

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

96 CHAPTER 6. UNCERTAINTY QUANTIFICATION CAPABILITIES

strategy, \
single_method #graphics \

method_pointer = ’UQ’

method, \
id_method = ’UQ’ \
model_pointer = ’UQ_M’ \
nond_polynomial_chaos \

expansion_order = 2 \
samples = 1000 seed = 12347 \
sample_type lhs \
response_levels = 0.5

model, \
id_model = ’UQ_M’ \
surrogate global \

dace_method_pointer = ’DACE’ \
hermite

variables, \
normal_uncertain = 2 \
nuv_means = 0 0 \
nuv_std_deviations = 1 1 \
nuv_descriptor = ’n1’ ’n2’ \

responses, \
num_response_functions = 1 \
no_gradients \
no_hessians

method, \
id_method = ’DACE’ \
model_pointer = ’DACE_M’ \
nond_sampling \

samples = 250 seed = 1158 \
sample_type lhs

model, \
id_model = ’DACE_M’ \
single \

interface_pointer = ’I1’

interface, \
id_interface = ’I1’ \
system asynchronous evaluation_concurrency = 5 \

analysis_driver = ’log_ratio’

Figure 6.12: DAKOTA input file for performing UQ using polynomial chaos expansions.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

6.5. EPISTEMIC NONDETERMINISTIC METHODS 97

Statistics based on 1000 samples:

Moments for each response function:
response_fn_1: Mean = -2.77897e+00 Std. Dev. = 4.92057e+00

Coeff. of Variation = -1.77064e+00

95% confidence intervals for each response function:
response_fn_1: Mean = (-3.08432e+00, -2.47363e+00),

Std Dev = (4.71397e+00, 5.14626e+00)

Probabilities for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:

Response Level Probability Level Reliability Index
-------------- ----------------- -----------------

5.0000000000e-01 8.2500000000e-01

Simple Correlation Matrix between input and output:
n1 n2 response_fn_1

n1 1.00000e+00
n2 -8.13091e-04 1.00000e+00

response_fn_1 -7.67484e-01 -1.32775e-02 1.00000e+00

Partial Correlation Matrix between input and output:
response_fn_1

n1 -7.67563e-01
n2 -2.16849e-02

Simple Rank Correlation Matrix between input and output:
n1 n2 response_fn_1

n1 1.00000e+00
n2 -2.88815e-03 1.00000e+00

response_fn_1 -8.15435e-01 -1.82354e-02 1.00000e+00

Partial Rank Correlation Matrix between input and output:
response_fn_1

n1 -8.15626e-01
n2 -3.55716e-02

Polynomial Chaos coefficients vector output
response_fn1
1 -2.7767149288e+00
2 -3.7452283448e+00
3 -6.5491681571e-03
4 -1.6293723416e+00
5 9.2459412004e-01
6 1.3637965300e+00

Figure 6.13: Output from UQ analysis using polynomial chaos expansions.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

98 CHAPTER 6. UNCERTAINTY QUANTIFICATION CAPABILITIES

ory, possibility theory, and evidence theory. We have chosen to pursue evidence theory at Sandia for modeling
epistemic uncertainty, in part because evidence theory is a generalization of probability theory. Evidence theory
is also referred to as Dempster-Shafer theory or the theory of random sets [76]. In evidence theory, there are two
complementary measures of uncertainty: belief and plausibility. Together, belief and plausibility can be thought
of as defining lower and upper bounds, respectively, on probabilities. Belief and plausibility define the lower and
upper limits or intervals on probability values. In evidence theory, it is not possible to specify one probability
value. Instead, there is a range of values that is consistent with the evidence. The range of values is defined by
belief and plausibility. Note that no statement or claim is made about one value within an interval being more or
less likely than any other value.

In Dempster-Shafer evidence theory, the uncertain input variables are modeled as sets of intervals. The user
assigns a basic probability assignment (BPA) to each interval, indicating how likely it is that the uncertain in-
put falls within the interval. The BPAs for a particular uncertain input variable must sum to one. The in-
tervals may be overlapping, contiguous, or have gaps. In DAKOTA, an interval uncertain variable is speci-
fied asinterval uncertain . When one defines an interval type variable in DAKOTA, it is also neces-
sary to specify the number of intervals defined for each variable withiuv num intervals as well the ba-
sic probability assignments per interval,iuv interval probs , and the associated bounds per each interval,
iuv interval bounds . Figure6.14shows the input specification for interval uncertain variables. The ex-
ample shown in Figure6.14has two epistemic uncertain interval variables. The first uncertain variable has three
intervals and the second has two. The basic probability assignments for the first variable are 0.5, 0.1, and 0.4,
while the BPAs for the second variable are 0.7 and 0.3. Note that it is possible (and often the case) to define
an interval uncertain variable with only ONE interval. This means that you only know that the possible value of
that variable falls within the interval, and the BPA for that interval would be 1.0. In the case we have shown, the
interval bounds on the first interval for the first variable are 0.6 and 0.9, and the bounds for the second interval for
the first variable are 0.1 to 0.5, etc.

Once the intervals, the BPAs, and the interval bounds are defined, the user can run an epistemic analysis by
specifying the method asnond evidence in the DAKOTA input file. The intervals and their associated BPAs
are then propagated through the simulation to obtain cumulative distribution functions on belief and plausibility.
As mentioned above, belief is the lower bound on a probability estimate that is consistent with the evidence, and
plausibility is the upper bound on a probability estimate that is consistent with the evidence. Figure6.15shows
the results obtained by running the example in Figure6.14. In this example, there are 6 output intervals (as a
result of the 2 interval input variables with 3 and 2 intervals, respectively). The first output interval has a basic
probability assignment of 0.35, and a lower and upper bound of 0.0637 and 0.2619. The output intervals are
ordered to obtain cumulative bound functions for both belief and plausibility. The complementary cumulative
function is presented for both belief (CCBF) and plausibility (CCPF). The CCBF value is the cumulative belief
corresponding to a certain output value. For example, the belief that the output value is greater than 0.14112 is
0.07, and the belief that the output is greater than 0.0019478 is one in this example. Similarly, the plausibility
that the output is greater than 0.8013 is 0.07, while the plausibility that the output is greater than 0.049229 is
1.0. The CCBF and CCPF may be plotted on a graph and interpreted as bounding the complementary cumulative
distribution function (CCDF), which is the probability that the output is greater than a certain value. The interval
bounds on probability values show the value of epistemic uncertainty analysis: the intervals are usually much
larger than expected, giving one a truer picture of the total output uncertainty caused by lack of knowledge or
information about the epistemic input quantities.

6.6 Future Nondeterministic Methods

Uncertainty analysis methods under investigation for future inclusion into the DAKOTA framework include ex-
tensions to the reliability techniques and sampling capabilities supported. Advanced “smart sampling” techniques

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

6.6. FUTURE NONDETERMINISTIC METHODS 99

strategy, \
single_method \

graphics

method, \
nond_evidence \

samples = 1000 \
seed = 59334

variables, \
interval_uncertain = 2 \

iuv_num_intervals = 3 2 \
iuv_interval_probs = 0.5 0.1 0.4 0.7 0.3 \
iuv_interval_bounds = 0.6 0.9 0.1 0.5 0.5 1.0 0.3 0.5 0.6 0.8

interface, \
system \

analysis_driver = ’text_book’

responses, \
num_response_functions = 1 \
no_gradients \
no_hessians

Figure 6.14: DAKOTA input file for UQ example using Evidence Theory.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

100 CHAPTER 6. UNCERTAINTY QUANTIFICATION CAPABILITIES

INPUT INTERVAL COMBINATION BASIC PROBABILITY ASSIGNMENTS
AND MINIMUM/MAXIMUM VALUES

COMBINATION BPA MIN MAX
1 3.5000E-01 6.3737E-02 2.6187E-01
2 7.0000E-02 1.4112E-01 8.0129E-01
3 2.8000E-01 6.2609E-02 2.9830E-01
4 1.5000E-01 1.9478E-03 4.9229E-02
5 3.0000E-02 8.0597E-02 6.2174E-01
6 1.2000E-01 1.9478E-03 8.3814E-02

COMPLEMENTARY CUMULATIVE BELIEF VALUES
COMB VALUE CCBF

2 1.4112E-01 7.0000E-02
5 8.0597E-02 1.0000E-01
1 6.3737E-02 4.5000E-01
3 6.2609E-02 7.3000E-01
4 1.9478E-03 8.8000E-01
6 1.9478E-03 1.0000E+00

COMPLEMENTARY CUMULATIVE PLAUSIBILITY VALUES
COMB VALUE CCPF

2 8.0129E-01 7.0000E-02
5 6.2174E-01 1.0000E-01
3 2.9830E-01 3.8000E-01
1 2.6187E-01 7.3000E-01
6 8.3814E-02 8.5000E-01
4 4.9229E-02 1.0000E+00

Figure 6.15: Results of an Epistemic Uncertainty Quantification using Evidence Theory.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

6.6. FUTURE NONDETERMINISTIC METHODS 101

such as bootstrap sampling (BS), importance sampling (IS), quasi-Monte Carlo simulation (qMC), and Markov
chain Monte Carlo simulation (McMC) are being investigated. Efforts have been initiated to allow for the possibil-
ity of non-traditional representations of uncertainty. We have implemented Dempster-Shafer theory of evidence,
but may also pursue possibility theory or fuzzy sets, and combinations of epistemic and aleatory uncertainty
methods. Finally, the tractability and efficacy of the more intrusive variant of stochastic finite element/polynomial
chaos expansion methods, previously mentioned, is being assessed for possible implementation in DAKOTA.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

102 CHAPTER 6. UNCERTAINTY QUANTIFICATION CAPABILITIES

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 7

Optimization Capabilities

7.1 Overview

DAKOTA’s optimization capabilities include a variety of gradient-based and nongradient-based optimization
methods. Numerous packages are available, some of which are commercial packages, some of which are de-
veloped internally to Sandia, and some of which are free software packages from the open source community.
The downloaded version of DAKOTA excludes the commercially developed packages but includes COLINY,
CONMIN, JEGA, OPT++, and PICO. Interfaces to DOT, NPSOL, and NLPQL are provided with DAKOTA, but
to use these commercial optimizers, the user must obtain a software license and the source code for these packages
separately. The commercial software can then be compiled into DAKOTA by following DAKOTA’s installation
procedures (see notes in/Dakota/INSTALL).

DAKOTA’s input commands permit the user to specify two-sided nonlinear inequality constraints of the form
gLi ≤ gi(x) ≤ gUi , as well as nonlinear equality constraints of the formhj(x) = htj (see also Section1.4.1).
Some optimizers (e.g., NPSOL, OPT++, JEGA) can handle these constraint forms directly, whereas other opti-
mizers (e.g., DOT, CONMIN) require DAKOTA to perform an internal conversion of all constraints to one-sided
inequality constraints of the formgi(x) ≤ 0. In the latter case, the two-sided inequality constraints are treated
as gi(x) − gUi

≤ 0 and gLi
− gi(x) ≤ 0 and the equality constraints are treated ashj(x) − htj ≤ 0 and

htj − hj(x) ≤ 0. The situation is similar for linear constraints: NPSOL, OPT++, and JEGA support them di-
rectly, whereas DOT and CONMIN do not. For linear inequalities of the formaLi ≤ aTi x ≤ aUi and linear
equalities of the formaTi x = atj , the nonlinear constraint arrays in DOT and CONMIN are further augmented to
includeaTi x − aUi

≤ 0 andaLi
− aTi x ≤ 0 in the inequality case andaTi x − atj ≤ 0 andatj − aTi x ≤ 0 in

the equality case. Awareness of these constraint augmentation procedures can be important for understanding the
diagnostic data returned from the DOT and CONMIN algorithms. Other optimizers fall somewhere in between.
NLPQL supports nonlinear equality constraintshj(x) = 0 and nonlinear one-sided inequalitiesgi(x) ≥ 0, but
does not natively support linear constraints. Constraint mappings are used with NLPQL for both linear and
nonlinear cases. Most COLINY methods now support two-sided nonlinear inequality constraints and nonlinear
constraints with targets, but do not natively support linear constraints. Constraint augmentation is not currently
used with COLINY, since linear constraints will soon be supported natively.

When gradient and Hessian information is used in the optimization, derivative components are most commonly
computed with respect to the active continuous variables, which in this case are thecontinuous design variables.
This differs from parameter study methods (for which all continuous variables are active) and from nondeter-
ministic analysis methods (for which the uncertain variables are active). Refer to Section13.3 for additional

104 CHAPTER 7. OPTIMIZATION CAPABILITIES

information on derivative components and active continuous variables.

7.2 Optimization Software Packages

7.2.1 COLINY Library

The COLINY library [57] supersedes the SGOPT library and contains a variety of nongradient-based optimization
algorithms. The suite of COLINY optimizers available in DAKOTA currently include the following:

• Global Optimization Methods

– Several evolutionary algorithms, including genetic algorithms (coliny ea)

– DIRECT [80] (coliny direct)

• Local Optimization Methods

– Solis-Wets (coliny solis wets)

– Pattern Search (coliny pattern search)

• Interfaces to Third-Party Local Optimization Methods

– Asynchronous Parallel Pattern Search (APPS) [62] 1 (coliny apps)

– COBYLA2 (coliny cobyla)

For expensive optimization problems, COLINY’s global optimizers are best suited for identifying promising
regions in the global design space. In multimodal design spaces, the combination of global identification (from
COLINY) with efficient local convergence (from CONMIN, DOT, NLPQL, NPSOL, or OPT++) can be highly
effective. None of the COLINY methods are gradient-based, which makes them appropriate for problems for
which gradient information is unavailable or is of questionable accuracy due to numerical noise. The COLINY
methods support bound constraints and nonlinear constraints, but not linear constraints. The nonlinear constraints
in COLINY are currently satisfied using penalty function formulations [81]. Support for methods which manage
constraints internally is currently being developed and will be incorporated into future versions of DAKOTA.Note
that one observed drawback tocoliny solis wets is that it does a poor job solving problems with nonlinear
constraints. Refer to Table 17.1 for additional method classification information.

An example specification for a simplex-based pattern search algorithm from COLINY is:

method, \
coliny_pattern_search \

max_function_evaluations = 2000 \
solution_accuracy = 1.0e-4 \
initial_delta = 0.05 \
threshold_delta = 1.0e-8 \
pattern_basis simplex \
exploratory_moves best_all \
contraction_factor = 0.75

The DAKOTA Reference Manual [29] contains additional information on the COLINY options and settings.

1http://software.sandia.gov/appspack/

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

http://software.sandia.gov/appspack/

7.2. OPTIMIZATION SOFTWARE PACKAGES 105

7.2.2 Constrained Minimization (CONMIN) Library

The CONMIN library [99] contains two methods for gradient-based nonlinear optimization. For constrained opti-
mization, the Method of Feasible Directions (DAKOTA’sconmin mfd method selection) is available, while for
unconstrained optimization, the Fletcher-Reeves conjugate gradient method (DAKOTA’sconmin frcg method
selection) is available. Both of these methods are most efficient at finding a local minimum in the vicinity of the
starting point. The methods in CONMIN can be applied to global optimization problems, but there is no guarantee
that they will find the globally optimal design point.

One observed drawback to CONMIN’s Method of Feasible Directions is that it does a poor job handling equality
constraints. This is the case even if the equality constraint is formulated as two inequality constraints. This
problem is what motivates the modifications to MFD that are present in DOT’s MMFD algorithm. For problems
with equality constraints, it is better to use the OPT++ nonlinear interior point methods, NPSOL, NLPQL, or one
of DOT’s constrained optimization methods (see below).

An example specification for CONMIN’s Method of Feasible Directions algorithm is:

method, \
conmin_mfd \

convergence_tolerance = 1.0e-4 \
max_iterations = 100 \
output quiet

Refer to the DAKOTA Reference Manual [29] for more information on the settings that can be used with CONMIN
methods.

7.2.3 Design Optimization Tools (DOT) Library

The DOT library [101] contains nonlinear programming optimizers, specifically the Broyden-Fletcher-Goldfarb-
Shanno (DAKOTA’sdot bfgs method selection) and Fletcher-Reeves conjugate gradient (DAKOTA’sdot frcg
method selection) methods for unconstrained optimization, and the modified method of feasible directions (DAKOTA’s
dot mmfd method selection), sequential linear programming (DAKOTA’sdot slp method selection), and se-
quential quadratic programming (DAKOTA’sdot sqp method selection) methods for constrained optimization.

All DOT methods are local gradient-based optimizers which are best suited for efficient navigation to a local
minimum in the vicinity of the initial point. Global optima in nonconvex design spaces may be missed. Other
gradient based optimizers for constrained optimization include the NPSOL, NLPQL, CONMIN, and OPT++
libraries.

Through theoptimization type specification, DOT can be used to solve either minimization or maximiza-
tion problems. For all other optimizer libraries, it is up to the user to reformulate a maximization problem as a
minimization problem by negating the objective function (i.e., maximizef(x) is equivalent to minimize−f(x)).
An example specification for DOT’s BFGS quasi-Newton algorithm is:

method, \
dot_bfgs \

optimization_type maximize \
convergence_tolerance = 1.0e-4 \
max_iterations = 100 \
output quiet

See the DAKOTA Reference Manual [29] for additional detail on the DOT commands. More information on DOT
can be obtained by contacting Vanderplaats Research and Development athttp://www.vrand.com .

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

http://www.vrand.com

106 CHAPTER 7. OPTIMIZATION CAPABILITIES

7.2.4 JEGA

The JEGA (John Eddy’s Genetic Algorithms) library contains two global optimization methods. The first is
a Multi-objective Genetic Algorithm (MOGA) which performs Pareto optimization. The second is a Single-
objective Genetic Algorithm (SOGA) which performs optimization on a single objective function. These functions
are accessed as (moga andsoga) within DAKOTA.

Themoga algorithm directly creates a population of Pareto optimal solutions. Over time, the selection operators
of a genetic algorithm act to efficiently select non-dominated solutions along the Pareto front. Because a GA
involves a population of solutions, many points along the Pareto front can be computed in a single study. Thus,
although GAs are computationally expensive when compared to gradient-based methods, the advantage in the
multiobjective setting is that one can obtain an entire Pareto set at the end of one genetic algorithm run, as
compared with having to run the “weighted sum” single objective problem multiple times with different weights.

The DAKOTA Reference Manual [29] contains additional information on the JEGA options and settings. Sec-
tion7.3discusses additional multiobjective optimization capabilities, and there are MOGA examples in Chapters2
and21.

7.2.5 MOOCHO Library

The MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization) library, formerly known as
rSQP++, is a new addition to DAKOTA that is not yet publicly available. It provides both general-purpose sequen-
tial quadratic programming (SQP) algorithms for nested analysis and design (NAND) as well as reduced-space
SQP algorithms for simultaneous analysis and design (SAND). Additional information on SAND is provided in
Section7.3.2. MOOCHO algorithm capabilities are available using thereduced sqp method selection.

7.2.6 NLPQL Library

The NLPQL library contains a sequential quadratic programming (SQP) implementation (DAKOTA’snlpql sqp
method selection). The particular implementation used is NLPQLP [90], a variant with distributed and non-
monotone line search. SQP is a nonlinear programming approach for constrained minimization which solves a
series of quadratic programming (QP) subproblems, where each QP minimizes a quadratic approximation to the
Lagrangian subject to linearized constraints. It uses an augmented Lagrangian merit function and a BFGS ap-
proximation to the Hessian of the Lagrangian. It is an infeasible method in that constraints will be satisfied at the
final solution, but not necessarily during the solution process. The non-monotone line search used in NLPQLP
is designed to be more robust in the presence of inaccurate or noisy gradients common in many engineering
applications.

NLPQL’s gradient-based approach is best suited for efficient navigation to a local minimum in the vicinity of
the initial point. Global optima in nonconvex design spaces may be missed. Other gradient based optimizers for
constrained optimization include the DOT, CONMIN, NPSOL, and OPT++ libraries.

See the DAKOTA Reference Manual [29] for additional detail on the NLPQL commands. More information on
NLPQL can be obtained from Prof. Klaus Schittkowski athttp://www.uni-bayreuth.de/departments/
math/˜kschittkowski/nlpqlp20.htm .

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

http://www.uni-bayreuth.de/departments/math/~kschittkowski/nlpqlp20.htm
http://www.uni-bayreuth.de/departments/math/~kschittkowski/nlpqlp20.htm

7.2. OPTIMIZATION SOFTWARE PACKAGES 107

7.2.7 NPSOL Library

The NPSOL library [46] contains a sequential quadratic programming (SQP) implementation (DAKOTA’snpsol sqp
method selection). Like NLPQL, it solves a series of QP subproblems, uses an augmented Lagrangian merit func-
tion and a BFGS approximation to the Hessian of the Lagrangian, and will not necessarily satisfy the constraints
until the final solution. It uses a sufficient-decrease line search approach, which is a gradient-based line search
for analytic, mixed, or DAKOTA-supplied numerical gradients and is a value-based line search in the vendor
numerical case.

NPSOL’s gradient-based approach is best suited for efficient navigation to a local minimum in the vicinity of the
initial point. Global optima in nonconvex design spaces may be missed. Other gradient based optimizers for
constrained optimization include the DOT, CONMIN, NLPQL, and OPT++ libraries.. For least squares methods
based on NPSOL, refer to Section8.2.2.

An example of an NPSOL specification is:

method, \
npsol_sqp \

convergence_tolerance = 1.0e-6 \
max_iterations = 100 \
output quiet

See the DAKOTA Reference Manual [29] for additional detail on the NPSOL commands. More information on
NPSOL can be obtained by contacting Stanford Business Software athttp://www.sbsi-sol-optimize.
com.

The NPSOL library generates diagnostics in addition to those appearing in the DAKOTA output stream. These
diagnostics are written to the default FORTRAN device 9 file (e.g.,ftn09 or fort.9 , depending on the archi-
tecture) in the working directory.

7.2.8 OPT++ Library

The OPT++ library [73] contains primarily nonlinear programming optimizers for unconstrained, bound con-
strained, and nonlinearly constrained minimization: Polak-Ribiere conjugate gradient (DAKOTA’soptpp cg
method selection), quasi-Newton (DAKOTA’soptpp q newton method selection), finite difference Newton
(DAKOTA’s optpp fd newton method selection), and full Newton (DAKOTA’soptpp newton method
selection). The library also contains the parallel direct search nongradient-based method [20] (specified as
DAKOTA’s optpp pds method selection).

OPT++’s gradient-based optimizers are best suited for efficient navigation to a local minimum in the vicinity of
the initial point. Global optima in nonconvex design spaces may be missed. OPT++’s PDS method does not use
gradients and has some limited global identification abilities; it is best suited for problems for which gradient
information is unavailable or is of questionable accuracy due to numerical noise. Some OPT++ methods are
strictly unconstrained (optpp cg) and some support bound constraints (optpp pds), whereas the Newton-
based methods (optpp q newton , optpp fd newton , andoptpp newton) all support general linear and
nonlinear constraints (refer to Table18.1). Other gradient-based optimizers include the DOT, CONMIN, NLPQL,
and NPSOL libraries. For least squares methods based on OPT++, refer to Section8.2.1.

An example specification for the OPT++ quasi-Newton algorithm is:

method, \
optpp_q_newton \

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

http://www.sbsi-sol-optimize.com
http://www.sbsi-sol-optimize.com

108 CHAPTER 7. OPTIMIZATION CAPABILITIES

max_iterations = 50 \
convergence_tolerance = 1e-4 \
output debug

See the DAKOTA Reference Manual [29] for additional detail on the OPT++ commands.

The OPT++ library generates diagnostics in addition to those appearing in the DAKOTA output stream. These
diagnostics are written to the fileOPTDEFAULT.out in the working directory.

7.2.9 Parallel Integer Combinatorial Optimization (PICO)

DAKOTA employs the branch and bound capabilities of the PICO library for solving discrete and mixed con-
tinuous/discrete constrained nonlinear optimization problems. This capability is implemented in DAKOTA as a
strategy and is discussed further in Section9.5.

7.2.10 SGOPT

The SGOPT library has been deprecated, and all methods have been migrated to the COLINY library.

7.3 Additional Optimization Capabilities

DAKOTA provides several capabilities which extend the services provided by the optimization software packages
described in Section7.2. First, any of the optimization algorithms can be used for multiobjective optimization
problems through the use of multiobjective transformation techniques (e.g., weighted sums). Second, large-scale
optimization algorithms (e.g., MOOCHO) can be used for simultaneous analysis and design through the use of a
fully-intrusive interface to internal simulation residual vectors and Jacobian matrices. Finally, with any optimizer
(or least squares solver described in Section8.2), user-specified (or in some cases automatic) scaling may be
applied to any of continuous design variables, functions (or least squares terms), and constraints.

7.3.1 Multiobjective Optimization

Multiobjective optimization means that there are two or more objective functions that you wish to optimize simul-
taneously. Often these are conflicting objectives, such as cost and performance. The answer to a multi-objective
problem is usually not a single point. Rather, it is a set of points called the Pareto front. Each point on the Pareto
front satisfies the Pareto optimality criterion, which is stated as follows: a feasible vectorX∗ is Pareto optimal
if there exists no other feasible vectorX which would improve some objective without causing a simultaneous
worsening in at least one other objective. Thus, if a feasible pointX ′ exists that CAN be improved on one or more
objectives simultaneously, it is not Pareto optimal: it is said to be “dominated” and the points along the Pareto
front are said to be “non-dominated.”

There are three capabilities for multiobjective optimization in DAKOTA. First, there is the MOGA capability de-
scribed previously in Section7.2.4. This is a specialized algorithm capability. The second capability involves the
use of response data transformations to recast a multiobjective problem as a single-objective problem. Currently,
DAKOTA supports the simple weighted sum approach for this transformation, in which a composite objective
function is constructed from a set of individual objective functions using a user-specified set of weighting factors.
This approach is optimization algorithm independent, in that it works with any of the optimization methods listed

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

7.3. ADDITIONAL OPTIMIZATION CAPABILITIES 109

previously in this chapter. The third capability is the Pareto-set optimization strategy described in Section9.4.
This capability also utilizes the multiobjective response data transformations to allow optimization algorithm in-
dependence; however, it builds upon the basic approach by computing sets of optima in order to generate a Pareto
trade-off surface.

In the multiobjective transformation approach in which multiple objectives are combined into one, an appropriate
single-objective optimization technique is used to solve the problem. The advantage of this approach is that one
can use any number of optimization methods that are especially suited for the particular problem class. One
disadvantage of the weighted sum transformation approach is that a linear weighted sum objective cannot locate
all optimal solutions in the Pareto set if the Pareto front is nonconvex. Also, if one wants to understand the effects
of changing weights, this method can become computationally expensive. Since each optimization of a single
weighted objective will find only one point near or on the Pareto front, many optimizations need to be performed
to get a good parametric understanding of the influence of the weights.

The selection of a multiobjective optimization problem is made through the specification of multiple objective
functions in the responses keyword block (i.e., thenum objective functions specification is greater than
1). The weighting factors on these objective functions can be optionally specified using themulti objective weights
keyword (the default is equal weightings). The composite objective function for this optimization problem,F ,
is formed using these weights as follows:F =

∑R
k=1 wkfk, where thefk terms are the individual objective

function values, thewk terms are the weights, andR is the number of objective functions. The weighting fac-
tors stipulate the relative importance of the design concerns represented by the individual objective functions; the
higher the weighting factor, the more dominant a particular objective function will be in the optimization pro-
cess. Constraints are not affected by the weighting factor mapping; therefore, both constrained and unconstrained
multiobjective optimization problems can be formulated and solved with DAKOTA, assuming selection of an ap-
propriate constrained or unconstrained single-objective optimization algorithm. Future multiobjective response
data transformations for goal programming, normal boundary intersection, etc. are planned.

Figure7.1 shows a DAKOTA input file for a multiobjective optimization problem based on the “textbook” test
problem. This input file is nameddakota multiobj1.in in the /Dakota/test directory. In the standard
textbook formulation, there is one objective function and two constraints. In the multiobjective textbook formula-
tion, all three of these functions are treated as objective functions (num objective functions = 3), with
weights given by themulti objective weights keyword. Note that it is not required that the weights sum
to a value of one. The multiobjective optimization capability also allows any number of constraints, although
none are included in this example.

Figure7.2 shows an excerpt of the results for this multiobjective optimization problem. The data for function
evaluation 9 show that the simulator is returning the values and gradients of the three objective functions and that
this data is being combined by DAKOTA into the value and gradient of the composite objective function, as iden-
tified by the header “Multiobjective transformation: ”. This combination of value and gradient data
from the individual objective functions employs the user-specified weightings of.7 , .2 , and.1 . Convergence
to the optimum of the multiobjective problem is indicated in this case by the gradient of the composite objective
function going to zero (no constraints are active).

By performing multiple optimizations for different sets of weights, a family of optimal solutions can be generated
which define the trade-offs that result when managing competing design concerns. This set of solutions is referred
to as the Pareto set. Section9.4describes a solution strategy used for directly generating the Pareto set in order to
investigate the trade-offs in multiobjective optimization problems.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

110 CHAPTER 7. OPTIMIZATION CAPABILITIES

strategy, \
single_method \
tabular_graphics_data

method, \
npsol_sqp \

convergence_tolerance = 1.e-8

variables, \
continuous_design = 2 \

cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor ’x1’ ’x2’

interface, \
system asynchronous \

analysis_driver= ’text_book’

responses, \
num_objective_functions = 3 \
multi_objective_weights = .7 .2 .1 \
analytic_gradients \
no_hessians \

Figure 7.1: Example DAKOTA input file for multiobjective optimization.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

7.3. ADDITIONAL OPTIMIZATION CAPABILITIES 111

Begin Function Evaluation 9

Parameters for function evaluation 9:

5.9388064484e-01 x1
7.4158741199e-01 x2

(text_book /var/tmp/qaagjayaZ /var/tmp/raahjayaZ)

Active response data for function evaluation 9:
Active set vector = { 3 3 3 }

3.1662048104e-02 obj_fn1
-1.8099485679e-02 obj_fn2

2.5301156720e-01 obj_fn3
[-2.6792982174e-01 -6.9024137409e-02] obj_fn1 gradient
[1.1877612897e+00 -5.0000000000e-01] obj_fn2 gradient
[-5.0000000000e-01 1.4831748240e+00] obj_fn3 gradient

Multiobjective transformation:
4.3844693257e-02 obj_fn

[1.3827220000e-06 5.8621370000e-07] obj_fn gradient

7 1 1.0E+00 9 4.38446933E-02 1.5E-06 2 T TT

Exit NPSOL - Optimal solution found.

Final nonlinear objective value = 0.4384469E-01

Figure 7.2: DAKOTA results for the multiobjective optimization example.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

112 CHAPTER 7. OPTIMIZATION CAPABILITIES

7.3.2 Simultaneous Analysis and Design (SAND) Optimization

DAKOTA was originally developed as a “black box” optimization tool that employs non-intrusive interfaces
with simulation codes. While this approach is useful for many engineering design applications, it can become
prohibitively expensive when there is a large design space (i.e.,O(102 − 106) design parameters) and when
the computational simulation is highly nonlinear. Current research and development activities are investigating
simultaneous analysis and design (SAND) methods, and these algorithms may be supported in DAKOTA in future
releases. These “all at once” approaches are considerably more intrusive to a simulation code than any current
interfacing capability in DAKOTA. But in some large-scale applications, the SAND method may be the only
viable alternative for optimization.

The basic idea behind SAND is to converge a nonlinear simulation code at the same time that the optimality
conditions are being converged. This amounts to applying the nonlinear simulation residual equations as equal-
ity constraints in the optimization problem and then using an infeasible optimization method (e.g., sequential
quadratic programming) which only satisfies these equality constraints in the limit (i.e., at the final optimal solu-
tion). This can result in a significant computational savings over black-box optimization approaches which require
a nonlinear simulation to be fully-converged on every function evaluation.

To implement a SAND technique, modifications to the simulation package are necessary so that the optimization
software may have access to the internal residual vector and state Jacobian matrix used by the simulation solver.
The SAND techniques can then leverage the internal linear algebra of the simulation package as appropriate in
performing the search direction calculations. A SAND-type optimization does make certain assumptions about
the simulation package, such as there is access to the state Jacobian matrix (although matrix free methods can
be interfaced as well), exact values are used in the state Jacobian, an implicit numerical solution scheme is used,
there are no discontinuities in the system, and steady state solutions are to be obtained (although SAND transient
solution capabilities are under development). Many single physics, PDE-based simulation codes fall in this cate-
gory. SAND approaches can be applied to more complex simulation codes, such as multi-physics packages, but
substantial modifications are often needed to make SAND feasible in these cases.

Details on SAND-type optimization approaches may be found in [5, 7]. Additional details on the SAND imple-
mentation in DAKOTA will appear in future releases of this Users Manual.

7.3.3 Optimization with User-specified or Automatic Scaling

Some optimization problems involving design variables, objective functions, or constraints on vastly different
scales may be solved more efficiently if these quantities are adjusted to a common scale (typically on the order of
unity). With any optimizer (or least squares solver described in Section8.2), user-specified or automatic scaling
may be applied to any of continuous design variables, nonlinear inequality and equality constraints, and linear
inequality and equality constraints. User-specified scaling may be applied to objective functions or least squares
terms. Discrete variable scaling is not supported.

Scaling is enabled on a per-method basis for optimizers and least squares minimizers by including thescaling
keyword in the relevantmethod specification in the DAKOTA input deck. When scaling is enabled, variables,
functions, gradients, Hessians, etc., are transformed such that the optimizer iterates in scaled variable space,
whereas evaluations of the computational model as specified in the interface are performed on the original problem
scale. Therefore using scaling does not require rewriting the interface to the simulation code.

Scaling factors are specified through the keywords listed in Table7.1, and are ignored if thescaling keyword
is omitted from themethod specification. Each* scales keyword specifies no, one, or a vector of scale
values to be applied to the corresponding variables or responses. If a single value is specified using any of
these keywords it will apply to each component of the relevant vector, e.g.,cdv scales = 3.0 will apply a

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

7.3. ADDITIONAL OPTIMIZATION CAPABILITIES 113

Table 7.1: Keywords for specifying scaling factors.

keyword input spec section default behavior
cdv scales variables automatic
objective function scales responses off (automatic not allowed)
least squares term scales responses off (automatic not allowed)
nonlinear inequality scales responses automatic
nonlinear equality scales responses automatic
linear inequality scales method automatic
linear equality scales method automatic

characteristic scaling value of3.0 to each continuous design variable. Valid entries in* scales vectors include
positive characteristic values (user-specified scale factors),1.0 to exempt a component from scaling, or0.0 for
automatic scaling, if available for that component. Negative scale values are not currently permitted.

When scaling is enabled, the following progression will be used to determine the type of scaling used on each
component of a variables or response vector:

1. When a strictly positive characteristic value is specified, the quantity will be scaled by it.

2. If a zero or no characteristic value is specified, automatic scaling will be attempted according to the follow-
ing scheme:

(a) two-sided bounds scaled into the interval[0, 1];

(b) one-sided bound or targets scaled by the absolute value of the characteristic value, moving the bound
or target to -1 or +1.

(c) no bounds or targets: no automatic scaling possible, therefore no scaling for this component

Automatic scaling is not available for objective functions or least squares terms since they do not have bound con-
straints.Caution:The scaling hierarchy is followed for all problem variables and constraints when thescaling
keyword is specified, so one must note the default scaling behavior for each component and manually exempt
components with a scale value of1.0 , if necessary.

Scaling for linear constraints specified throughlinear inequality scales or linear equality scales
is appliedafter any (user-specified or automatic) continuous variable scaling. For example, for scaling mapping
unscaled continuous design variablesx to scaled variables̃x:

x̃j =
xj − xjO
xjM

,

we have the following matrix system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃+ xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU ,

and user-specified or automatically computed scaling multipliers are applied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by characteristic values only, but not affinely into the interval[0, 1].

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

114 CHAPTER 7. OPTIMIZATION CAPABILITIES

strategy, \
single_method

method, \
dot_mmfd, \
max_iterations = 50, \
convergence_tolerance = 1e-4

variables, \
continuous_design = 2 \
cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_scales 4.0 0.0 \
cdv_descriptor ’x1’ ’x2’

interface, \
fork \

analysis_driver = ’text_book’ \

responses, \
num_objective_functions = 1 \
objective_function_scales 50.0 \
num_nonlinear_inequality_constraints = 2 \
nonlinear_inequality_constraint_scales 15.0 1.0 \
numerical_gradients \

method_source dakota \
interval_type central \
fd_gradient_step_size = 1.e-4 \

no_hessians

Figure 7.3: Sample usage of scaling keywords in DAKOTA input specification.

Figure7.3demonstrates the use of several scaling keywords for the textbook optimization problem. The continu-
ous design variablex1 is scaled by a characteristic value of4.0 , whereasx2 is scaled automatically into[0, 1]
based on its bounds. The objective function will be scaled by a factor of50.0 , the first nonlinear constraint by a
factor of15.0 , and the second nonlinear constraint is not scaled.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 8

Nonlinear Least Squares Capabilities

8.1 Overview

Nonlinear least squares methods are optimization algorithms which exploit the special structure of a sum of the
squares objective function [47]. These problems commonly arise in parameter estimation, system identification,
and test/analysis reconciliation. In order to exploit the problem structure, more granularity is needed in the
response data than that required for a typical optimization problem. That is, rather than using the sum-of-squares
objective function and its gradient, least squares iterators require each term used in the sum-of-squares formulation
along with its gradient. This means that them functions in the DAKOTA response data set consist of the individual
least squares terms along with any nonlinear inequality and equality constraints. These individual terms are often
calledresidualsin cases where they denote errors of observed quantities from desired quantities.

The enhanced granularity needed for nonlinear least-squares algorithms allows for simplified computation of an
approximate Hessian matrix. In Gauss-Newton-based methods for example, the true Hessian matrix is approxi-
mated by neglecting terms in which the residual function values appear, under the assumption that the residuals
tend towards zero at the solution. As a result, residual function value and gradient information (first-order in-
formation) is sufficient to define the value, gradient, and approximate Hessian of the sum-of-squares objective
function (second-order information). See Section1.4.2for additional details on this approximation.

In practice, least squares solvers will tend to be significantly more efficient than general-purpose optimization
algorithms when the Hessian approximation is a good one, e.g., when the residuals tend towards zero at the
solution. Specifically, they can exhibit the quadratic convergence rates of full Newton methods, even though only
first-order information is used. Gauss-Newton-based least squares solvers may experience difficulty when the
residuals at the solution are significant.

In order to specify a least-squares problem, the responses section of the DAKOTA input should be configured us-
ing num least squares terms (as opposed tonum objective functions in the case of optimization).
Any linear or nonlinear constraints are handled in an identical way to that of optimization (see Section7.1; note
that neither Gauss-Newton nor NLSSOL require any constraint augmentation and NL2SOL supports neither linear
nor nonlinear constraints). Gradients of the least squares terms and nonlinear constraints are required and should
be specified using eithernumerical gradients , analytic gradients , or mixed gradients . Since
second derivatives of the least squares terms are not needed by nature of the Hessian approximations, theno hessians
specification should be used. DAKOTA’s scaling options, described in Section7.3.3can be used on least squares
problems, using theleast squares term scales keyword to scale least squares residuals, if desired.

116 CHAPTER 8. NONLINEAR LEAST SQUARES CAPABILITIES

8.2 Solution Techniques

Nonlinear least squares problems can be solved using the Gauss-Newton algorithm, which leverages the full
Newton method from OPT++, the NLSSOL algorithm, which is closely related to NPSOL, or the NL2SOL
algorithm, which uses a secant-based algorithm. Details for each are provided below.

8.2.1 Gauss-Newton

DAKOTA’s Gauss-Newton algorithm consists of combining an implementation of the Gauss-Newton Hessian
approximation (see Section1.4.2) with full Newton optimization algorithms from the OPT++ package [73] (see
Section7.2.8). This approach can be selected using theoptpp g newton method specification. An example
specification follows:

method, \
optpp_g_newton \

max_iterations = 50 \
convergence_tolerance = 1e-4 \
output debug

Refer to the DAKOTA Reference Manual [29] for more detail on the input commands for the Gauss-Newton
algorithm.

The Gauss-Newton algorithm is gradient-based and is best suited for efficient navigation to a local least squares
solution in the vicinity of the initial point. Global optima in multimodal design spaces may be missed. Gauss-
Newton supports bound, linear, and nonlinear constraints. For the nonlinearly-constrained case, constraint Hes-
sians (required for full-Newton nonlinear interior point optimization algorithms) are approximated using quasi-
Newton secant updates. Thus, both the objective and constraint Hessians are approximated using first-order
information.

8.2.2 NLSSOL

The NLSSOL algorithm is a commercial software product of Stanford University that is bundled with current
versions of the NPSOL library (see Section7.2.7). It uses an SQP-based approach to solve generally-constrained
nonlinear least squares problems. It periodically employs the Gauss-Newton Hessian approximation to accelerate
the search. Like the Gauss-Newton algorithm of Section8.2.1, its derivative order is balanced in that it requires
only first-order information for the least squares terms and nonlinear constraints. This approach can be selected
using thenlssol sqp method specification. An example specification follows:

method, \
nlssol_sqp \

convergence_tolerance = 1e-8

Refer to the DAKOTA Reference Manual [29] for more detail on the input commands for NLSSOL.

8.2.3 NL2SOL

The NL2SOL algorithm [18] is a secant-based least-squares algorithm that isq-superlinearly convergent. It does
not rely solely on the Gauss-Newton Hessian approximation and is appropriate for “large residual” problems, i.e.,
least squares problems for which the residuals do not tend towards zero at the solution.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

8.3. EXAMPLES 117

Active response data for function evaluation 1:
Active set vector = { 3 3 }

6.0000000000e-01 least_sq_term1
2.0000000000e-01 least_sq_term2

[-1.6000000000e+01 1.0000000000e+01] least_sq_term1 gradient
[-1.0000000000e+00 0.0000000000e+00] least_sq_term2 gradient

nlf2_evaluator_gn results: objective fn. =
4.0000000000e-01
nlf2_evaluator_gn results: objective fn. gradient =

[-1.9600000000e+01 1.2000000000e+01]
nlf2_evaluator_gn results: objective fn. Hessian =

[[5.1400000000e+02 -3.2000000000e+02
-3.2000000000e+02 2.0000000000e+02]]

Figure 8.1: Example of the Gauss-Newton approximation.

8.2.4 Future plans

The least squares branch in DAKOTA is an area of continuing enhancements, particularly through the addition
of new least squares algorithms. One potential future addition is the orthogonal distance regression (ODR) algo-
rithms which estimate values for both independent and dependent parameters.

8.3 Examples

Both the Rosenbrock and textbook example problems can be formulated as nonlinear least squares problems.
Refer to Chapter21 for more information on these formulations. Figure8.1shows an excerpt from the textbook
example which demonstrates use of the Gauss-Newton approximation in computing the objective function value,
gradient, and Hessian from values and gradients of the least squares terms.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

118 CHAPTER 8. NONLINEAR LEAST SQUARES CAPABILITIES

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 9

Advanced Optimization Strategies

9.1 Overview

DAKOTA’s strategy capabilities were developed in order to provide a control layer for managing multiple iterators
and models. It was driven by the observed need for “meta-optimization” and other high level systems analysis
procedures in real-world engineering design problems. This capability allows the use of existing iterative algo-
rithm and computational model software components as building blocks to accomplish more sophisticated studies,
such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or Pareto opti-
mization. Other strategy-like capabilities are enabled by the model recursion capabilities described in Chapter10.
When these model recursion specifications are sufficient to completely describe a multi-iterator, multi-model
solution approach, then a separate strategy specification is not used (see Section10.5for examples).

9.2 Multilevel Hybrid Optimization

In the multilevel hybrid optimization strategy (keyword:multi level), a sequence of optimization methods are
applied to find an optimal design point. The goal of this strategy is to exploit the strengths of different optimization
algorithms through different stages of the optimization process. Global/local hybrids (e.g., genetic algorithms
combined with nonlinear programming) are a common example in which the desire for a global optimum is
balanced with the need for efficient navigation to a local optimum. An important related feature is that the
sequence of optimization algorithms can employ models of varying fidelity. In the global/local case, for example,
it would often be advantageous to use a low-fidelity model in the global search phase, followed by use of a more
refined model in the local search phase.

The specification for multilevel optimization involves a list of method identifier strings, and each of the corre-
sponding method specifications has the responsibility for identifying the model specification (which may in turn
identify variables, interface, and responses specifications) that each method will use (see the DAKOTA Reference
Manual [29] and the example discussed below). Currently, only the uncoupled multilevel approach is available.
Thecoupled anduncoupled adaptive approaches are not fully functional at this time.

In theuncoupled multilevel optimization approach, a sequence of optimization methods is invoked in the order
specified in the DAKOTA input file. The best solution from each method is used as the starting point for the
following method. Method switching is governed by the separate convergence controls of each method; that
is, each method is allowed to run to its own internal definition of completion without interference. Individual

120 CHAPTER 9. ADVANCED OPTIMIZATION STRATEGIES

method completion may be determined by convergence criteria (e.g.,convergence tolerance) or iteration
limits (e.g.,max iterations). Theuncoupled adaptive approach is similar, with the difference that the
progress of each method is monitored and method switching is enforced according to externally-defined relative
progress metrics. Finally, thecoupled approach is restricted to special tightly-coupled hybrid algorithms in
which local searches are used periodically to accelerate a global search. These hybrids do not contain a discrete
method switch, but rather repeatedly apply a local algorithm within the context of the global algorithm.

Figure9.1 shows a DAKOTA input file that specifies an uncoupled multilevel optimization strategy to solve the
“textbook” optimization test problem. This input file is nameddakota multilevel.in in the/Dakota/test
directory. The three optimization methods are identified using themethod list specification in the strategy
section of the input file. The identifier strings listed in the specification are ‘GA’ for genetic algorithm, ‘PS’
for pattern search, and ‘NLP’ for nonlinear programming. Following the strategy keyword block are the three
corresponding method keyword blocks. Note that each method has a tag following theid method keyword
that corresponds to one of the method names listed in the strategy keyword block. By following the identifier
tags frommethod to model and frommodel to variables , interface , andresponses , it is easy to
see the specification linkages for this problem. The GA optimizer runs first and uses model ‘M1’ which includes
variables ‘V1’, interface ‘I1 ’, and responses ‘R1’. Once the GA is complete, the PS optimizer starts from the
best GA result and again uses model ‘M1’. Since both GA and PS are nongradient-based optimization methods,
there is no need for gradient or Hessian information in the ‘R1’ response keyword block. The NLP optimizer runs
last, using the best result from the PS method as its starting point. It uses model ‘M2’ which includes the same
‘V1’ and ‘I1 ’ keyword blocks, but uses the responses keyword block ‘R2’ since the full Newton optimizer used
in this example (optpp newton) needs analytic gradient and Hessian data to perform its search.

9.3 Multistart Local Optimization

A simple, heuristic, global optimization technique is to use many local optimization runs, each of which is started
from a different initial point in the parameter space. This is known as multistart local optimization. This is
an attractive strategy in situations where multiple local optima are known or expected to exist in the parameter
space. However, there is no theoretical guarantee that the global optimum will be found. This approach com-
bines the efficiency of local optimization methods with a user-specified global stratification (using a specified
starting points list, a number of specifiedrandom starts , or both; see the DAKOTA Reference Man-
ual [29] for additional specification details). Since solutions for different starting points are independent, parallel
computing may be used to concurrently run the local optimizations.

An example input file for multistart local optimization on the “quasisine” test function (seequasi sine fcn.C
in /Dakota/test) is shown in Figure9.2. The strategy keyword block in the input file contains the keyword
multi start , along with the set of starting points (3 random and 5 listed) that will be used for the optimization
runs. The other keyword blocks in the input file are similar to what would be used in a single optimization run.

Thequasi sine test function has multiple local minima, but there is an overall trend in the function that tends
toward the global minimum at(x1, x2) = (0.177, 0.177). See [50] for more information on this test function.
Figure9.3shows the results summary for the eight local optimizations performed. From the five specified starting
points and the 3 random starting points (as identified by thex1 , x2 headers), the eight local optima (as identified
by thex1* , x2* headers) are all different and only one of the local optimizations finds the global minimum.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

9.3. MULTISTART LOCAL OPTIMIZATION 121

strategy, \
graphics \
multi_level uncoupled \

method_list = ’GA’ ’PS’ ’NLP’

method, \
id_method = ’GA’ \
model_pointer = ’M1’ \
coliny_ea \

seed = 1234 \
population_size = 10 \
verbose output

method, \
id_method = ’PS’ \
model_pointer = ’M1’ \
coliny_pattern search stochastic \

seed = 1234 \
initial_delta = 0.1 \
threshold_delta = 1.e-4 \
solution_accuracy = 1.e-10 \
exploratory_moves basic_pattern \
verbose output

method, \
id_method = ’NLP’ \
model_pointer = ’M2’ \
optpp_newton \

gradient_tolerance = 1.e-12 \
convergence_tolerance = 1.e-15 \
verbose output

model, \
id_model = ’M1’ \
single \

variables_pointer = ’V1’ \
interface_pointer = ’I1’ \
responses_pointer = ’R1’ \

model, \
id_model = ’M2’ \
single \

variables_pointer = ’V1’ \
interface_pointer = ’I1’ \
responses_pointer = ’R2’ \

variables, \
id_variables = ’V1’ \
continuous_design = 2 \

cdv_initial_point 0.6 0.7 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor ’x1’ ’x2’

interface, \
id_interface = ’I1’ \
direct \

analysis_driver= ’text_book’

responses, \
id_responses = ’R1’ \
num_objective_functions = 1 \
no_gradients \
no_hessians

responses, \
id_responses = ’R2’ \
num_objective_functions = 1 \
analytic_gradients \
analytic_hessians

Figure 9.1: DAKOTA input file for the multilevel optimization strategy.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

122 CHAPTER 9. ADVANCED OPTIMIZATION STRATEGIES

strategy, \
multi_start graphics \

method_pointer = ’NLP’ \
random_starts = 3 seed = 123 \
starting_points = -.8 -.8 \

-.8 .8 \
.8 -.8 \
.8 .8 \

0. 0.

method, \
id_method = ’NLP’ \
dot_bfgs

variables, \
continuous_design = 2 \

cdv_lower_bounds -1.0 -1.0 \
cdv_upper_bounds 1.0 1.0 \
cdv_descriptor ’x1’ ’x2’

interface, \
system #asynchronous \

analysis_driver = ’quasi_sine_fcn’

responses, \
num_objective_functions = 1 \
analytic_gradients \
no_hessians

Figure 9.2: DAKOTA input file for the multistart local optimization strategy.

<<<<< Results summary:
set_id x1 x2 x1* x2* obj_fn

1 -0.8 -0.8 -0.8543728666 -0.8543728666 0.5584096919
2 -0.8 0.8 -0.9998398719 0.177092822 0.291406596
3 0.8 -0.8 0.177092822 -0.9998398719 0.291406596
4 0.8 0.8 0.1770928217 0.1770928217 0.0602471946
5 0 0 0.03572926375 0.03572926375 0.08730499239
6 -0.7767971993 0.01810943539 -0.7024118387 0.03572951143 0.3165522387
7 -0.3291571008 -0.7697378755 0.3167607374 -0.4009188363 0.2471403213
8 0.8704730469 0.7720679005 0.177092899 0.3167611757 0.08256082751

Figure 9.3: DAKOTA results summary for the multistart local optimization strategy.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

9.4. PARETO OPTIMIZATION 123

9.4 Pareto Optimization

The Pareto optimization strategy (keyword:pareto set) is one of three multiobjective optimization capabilities
discussed in Section7.3.1. In the Pareto optimization strategy, multiple sets of multiobjective weightings are eval-
uated. The user can specify these weighting sets in the strategy keyword block using amulti objective weight sets
list, a number ofrandom weight sets , or both (see the DAKOTA Reference Manual [29] for additional speci-
fication details). Figure9.4shows the input commands from the filedakota pareto.in in the/Dakota/test
directory.

DAKOTA performs one multiobjective optimization problem for each set of multiobjective weights. The col-
lection of computed optimal solutions form a Pareto set, which can be useful in making trade-off decisions in
engineering design. Since solutions for different multiobjective weights are independent, parallel computing may
be used to concurrently execute the multiobjective optimization problems.

Figure9.5shows the results summary for the Pareto-set optimization strategy. For the four multiobjective weight-
ing sets (as identified by thew1, w2, w3 headers), the local optima (as identified by thex1 , x2 headers) are all
different and correspond to individual objective function values of (f1, f2, f3) = (0.0,0.5,0.5), (13.1,-1.2,8.16),
(532.,33.6,-2.9), and (0.125,0.0,0.0) (note: the composite objective function is tabulated under theobj fn
header). The first three solutions reflect exclusive optimization of each of the individual objective functions
in turn, whereas the final solution reflects a balanced weighting and the lowest sum of the three objectives. Plot-
ting these (f1, f2, f3) triplets on a 3-dimensional plot results in a Pareto surface (not shown), which is useful for
visualizing the trade-offs in the competing objectives.

9.5 Mixed Integer Nonlinear Programming (MINLP)

For DAKOTA 4.0, branch and bound is currently inoperative due to ongoing restructuring of PICO and its incor-
poration into COLINY. This will be supported again in future releases.

Many nonlinear optimization problems involve a combination of discrete and continuous variables. These are
known as mixed integer nonlinear programming (MINLP) problems. A typical MINLP optimization problem is
formulated as follows:

minimize: f(x,d)
subject to: gL ≤ g(x,d) ≤ gU

h(x,d) = ht (9.1)

xL ≤ x ≤ xU
d ∈ {−2,−1, 0, 1, 2}

whered is a vector whose elements are integer values. In situations where the discrete variables can be tem-
porarily relaxed (i.e., noncategorical discrete variables, see Section11.2.2), the branch-and-bound algorithm can
be applied. Categorical variables (e.g., true/false variables, feature counts, etc.) that are not relaxable cannot be
used with the branch and bound strategy. During the branch and bound process, the discrete variables are treated
as continuous variables and the integrality conditions on these variables are incrementally enforced through a se-
quence of optimization subproblems. By the end of this process, an optimal solution that is feasible with respect
to the integrality conditions is computed.

DAKOTA’s branch and bound strategy (keyword:branch and bound) can solve optimization problems having
either discrete or mixed continuous/discrete variables. This strategy uses the parallel branch-and-bound algorithm

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

124 CHAPTER 9. ADVANCED OPTIMIZATION STRATEGIES

strategy, \
pareto_set graphics \

opt_method_pointer = ’NLP’ \
multi_objective_weight_sets = \

1. 0. 0. \
0. 1. 0. \
0. 0. 1. \

.333 .333 .333

method, \
id_method = ’NLP’ \
dot_bfgs

variables, \
continuous_design = 2 \

cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor ’x1’ ’x2’

interface, \
system #asynchronous \

analysis_driver = ’text_book’

responses, \
num_objective_functions = 3 \
analytic_gradients \
no_hessians

Figure 9.4: DAKOTA input file for the Pareto optimization strategy.

<<<<< Results summary:
set_id w1 w2 w3 x1 x2 obj_fn

1 1 0 0 0.9996554048 0.997046351 7.612301561e-11
2 0 1 0 0.5 2.9 -1.2
3 0 0 1 5.8 1.12747589e-11 -2.9
4 0.333 0.333 0.333 0.5 0.5000000041 0.041625

Figure 9.5: DAKOTA results summary for the Pareto-set optimization strategy.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

9.5. MIXED INTEGER NONLINEAR PROGRAMMING (MINLP) 125

from the PICO software package [24, 25] to generate a series of optimization subproblems (“branches”). These
subproblems are solved as continuous variable problems using any of DAKOTA’s nonlinear optimization algo-
rithms (e.g., DOT, NPSOL). When a solution to a branch is feasible with respect to the integrality constraints,
it provides an upper bound on the optimal objective function, which can be used to prune branches with higher
objective functions that are not yet feasible. Since solutions for different branches are independent, parallel com-
puting may be used to concurrently execute the optimization subproblems.

PICO, by itself, targets the solution of mixed integer linear programming (MILP) problems, and through coupling
with DAKOTA’s nonlinear optimizers, is extended to solution of MINLP problems. In the case of MILP problems,
the upper bound obtained with a feasible solution is an exact bound and the branch and bound process is provably
convergent to the global minimum. For nonlinear problems which may exhibit nonconvexity or multimodality,
the process is heuristic in general, since there may be good solutions that are missed during the solution of a
particular branch. However, the process still computes a series of locally optimal solutions, and is therefore a
natural extension of the results from local optimization techniques for continuous domains. Only with rigorous
global optimization of each branch can a global minimum be guaranteed when performing branch and bound on
nonlinear problems of unknown structure.

In cases where there are only a few discrete variables and when the discrete values are drawn from a small set,
then it may be reasonable to perform a separate optimization problem for all of the possible combinations of the
discrete variables. However, this brute force approach becomes computationally intractable if these conditions
are not met. The branch-and-bound algorithm will generally require solution of fewer subproblems than the
brute force method, although it will still be significantly more expensive than solving a purely continuous design
problem.

9.5.1 Example MINLP Problem

As an example, consider the following MINLP problem [37]:

minimize: f(x) =
6∑
i=1

(xi − 1.4)4

g1 = x2
1 −

x2

2
≤ 0

g2 = x2
2 −

x1

2
≤ 0 (9.2)

−10 ≤ x1, x2, x3, x4 ≤ 10
x5, x6 ∈ {0, 1, 2, 3, 4}

This problem is a variant of the textbook test problem described in Section21.1. In addition to the introduction
of two integer variables, a modified value of1.4 is used inside the quartic sum to render the continuous solution a
non-integral solution.

Figure9.6shows the sequence of branches generated for this problem. The first optimization subproblem relaxes
the integrality constraint on parametersx5 andx6, so that0 ≤ x5 ≤ 4 and0 ≤ x6 ≤ 4. The values forx5 andx6

at the solution to this first subproblem arex5 = x6 = 1.4. Sincex5 andx6 must be integers, the next step in the
solution process “branches” on parameterx5 to create two new optimization subproblems; one with0 ≤ x5 ≤ 1
and the other with2 ≤ x5 ≤ 4. Note that, at this first branching, the bounds onx6 are still 0 ≤ x6 ≤ 4.
Next, the two new optimization subproblems are solved. Since they are independent, they can be performed in
parallel. The branch-and-bound process continues, operating on bothx5 andx6 , until a optimization subproblem

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

126 CHAPTER 9. ADVANCED OPTIMIZATION STRATEGIES

Figure 9.6: Branching history for example MINLP optimization problem.

is solved wherex5 andx6 are integer-valued. At the solution to this problem, the optimal values forx5 andx6

arex5 = x6 = 1.

In this example problem, the branch-and-bound algorithm executes as few as five and no more than seven opti-
mization subproblems to reach the solution. For comparison, the brute force approach would require 25 optimiza-
tion problems to be solved (i.e., five possible values for each ofx5 andx6).

In the example given above, the discrete variables are integer-valued. In some cases, the discrete variables may
be real-valued, such asx ∈ {0.0, 0.5, 1.0, 1.5, 2.0}. The branch-and-bound algorithm is restricted to work with
integer values. Therefore, it is up to the user to perform a transformation between the discrete integer values from
DAKOTA and the discrete real values that are passed to the simulation code (see Section11.2.2). When integrality
is not being relaxed, a common mapping is to use the integer value from DAKOTA as the index into a vector of
discrete real values. However, when integrality is relaxed, additional logic for interpolating between the discrete
real values is needed.

9.6 Surrogate-Based Optimization (SBO)

In the surrogate-based optimization strategy (keyword:surrogate based opt) the optimization algorithm
operates on a surrogate model instead of directly operating on the computationally expensive simulation model.
The surrogate model can be based on data fits, multifidelity models, or reduced-order models, as described in
Section10.3. Since the surrogate will generally have a limited range of accuracy, the SBO algorithm periodically
checks the accuracy of the surrogate model against the original simulation model and adaptively manages the
extent of the approximate optimization cycles using a trust region approach.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

9.6. SURROGATE-BASED OPTIMIZATION (SBO) 127

Table 9.1: SBO approximate subproblem formulations.
Original Objective Lagrangian Augmented Lagrangian

No constraints TRAL
Linearized constraints SQP-like
Original constraints Direct surrogate IPTRSAO

A generally-constrained nonlinear programming problem takes the form

minimize f(x)
subject to gl ≤ g(x) ≤ gu

h(x) = ht
xl ≤ x ≤ xu (9.3)

wherex ∈ <n is the vector of design variables, andf , g, andh are the objective function, nonlinear inequality
constraints, and nonlinear equality constraints, respectively1. Individual nonlinear inequality and equality con-
straints are enumerated usingi andj, respectively (e.g.,gi andhj). The corresponding surrogate-based optimiza-
tion (SBO) algorithm may be formulated in several ways. In all cases, SBO solves a sequence ofk approximate
optimization subproblems subject to a trust region constraint∆k; however, many different forms of the surrogate
objectives and constraints in the approximate subproblem can be explored. In particular, the subproblem objective
may be a surrogate of the original objective or a surrogate of a merit function (most commonly, the Lagrangian or
augmented Lagrangian), and the subproblem constraints may be surrogates of the original constraints, linearized
approximations of the surrogate constraints, or may be omitted entirely. Each of these combinations is shown
in Table9.1, where black indicates an inappropriate combination, gray indicates an acceptable combination, and
blue indicates a common combination.

Initial approaches to nonlinearly-constrained SBO optimized an approximate merit function which incorporated
the nonlinear constraints [86, 1]:

minimize Φ̂k(x)
subject to ‖ x− xkc ‖∞ ≤ ∆k (9.4)

where the surrogate merit function is denoted asΦ̂(x), xc is the center point of the trust region, and the trust region
is truncated at the global variable bounds as needed. The merit function to approximate was typically chosen to
be a standard implementation [100, 75, 47] of the augmented Lagrangian merit function (see Eqs.9.13–9.14),
where the surrogate augmented Lagrangian is constructed from individual surrogate models of the objective and
constraints (approximate and assemble, rather than assemble and approximate). In Table9.1, this corresponds
to row 1, column 3, and is known as the trust-region augmented Lagrangian (TRAL) approach. While this
approach was provably convergent, convergence rates to constrained minima have been observed to be slowed by
the required updating of Lagrange multipliers and penalty parameters [79]. Prior to converging these parameters,
SBO iterates did not strictly respect constraint boundaries and were often infeasible. A subsequent approach
(IPTRSAO [79]) that sought to directly address this shortcoming added explicit surrogate constraints (row 3,
column 3 in Table9.1):

minimize Φ̂k(x)
subject to gl ≤ ĝk(x) ≤ gu

ĥk(x) = ht
‖ x− xkc ‖∞ ≤ ∆k . (9.5)

1Any linear constraints are not approximated and may be added without modification to all formulations

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

128 CHAPTER 9. ADVANCED OPTIMIZATION STRATEGIES

While this approach does address infeasible iterates, it still shares the feature that the surrogate merit function
may reflect inaccurate relative weightings of the objective and constraints prior to convergence of the Lagrange
multipliers and penalty parameters. That is, one may benefit from more feasible intermediate iterates, but the
process may still be slow to converge to optimality. The concept of this approach is similar to that of SQP-like
SBO approaches [1] which use linearized constraints:

minimize Φ̂k(x)
subject to gl ≤ ĝk(xkc) +∇ĝk(xkc)

T (x− xkc) ≤ gu
ĥk(xkc) +∇ĥk(xkc)

T (x− xkc) = ht
‖ x− xkc ‖∞ ≤ ∆k . (9.6)

in that the primary concern is minimizing a composite merit function of the objective and constraints, but under
the restriction that the original problem constraints may not be wildly violated prior to convergence of Lagrange
multiplier estimates. Here, the merit function selection of the Lagrangian function (row 2, column 2 in Table9.1;
see also Eq.9.12) is most closely related to SQP, which includes the use of first-order Lagrange multiplier up-
dates (Eq.9.18) that should converge more rapidly near a constrained minimizer than the zeroth-order updates
(Eqs.9.15-9.16) used for the augmented Lagrangian.

All of these previous constrained SBO approaches involve a recasting of the approximate subproblem objective
and constraints as a function of the original objective and constraint surrogates. A more direct approach is to use
a formulation of:

minimize f̂k(x)
subject to gl ≤ ĝk(x) ≤ gu

ĥk(x) = ht
‖ x− xkc ‖∞ ≤ ∆k (9.7)

This approach has been termed the direct surrogate approach since it optimizes surrogates of the original objective
and constraints (row 3, column 1 in Table9.1) without any recasting. It is attractive both from its simplicity
and potential for improved performance, and is the default approach supported in DAKOTA version 4.0. Other
DAKOTA defaults for 4.0 include the use of a filter method for iterate acceptance,an augmented Lagrangian merit
function,Lagrangian hard convergence assessment,and no constraint relaxation(see Section9.6.1).

While the formulation of Eq.9.4 (and others from row 1 in Table9.1) can suffer from infeasible intermediate
iterates and slow convergence to constrained minima, each of the approximate subproblem formulations with
explicit constraints (Eqs.9.5-9.7, and others from rows 2-3 in Table9.1) can suffer from the lack of a feasible
solution within the current trust region. Techniques for dealing with this latter challenge involve some form of
constraint relaxation. Homotopy approaches [79, 78] or composite step approaches such as Byrd-Omojokun [77],
Celis-Dennis-Tapia [12], or MAESTRO [1] may be used for this purpose (see Section9.6.1).

After each of thek iterations in the SBO strategy, the predicted step is validated by computingf(xk∗), g(xk∗),
andh(xk∗). One approach forms the trust region ratioρk which measures the ratio of the actual improvement to
the improvement predicted by optimization on the surrogate model. When optimizing on an approximate merit
function (Eqs.9.4–9.6), the following ratio is natural to compute

ρk =
Φ(xkc)− Φ(xk∗)
Φ̂(xkc)− Φ̂(xk∗)

. (9.8)

The formulation in Eq.9.7may also form a merit function for computing the trust region ratio; however, the omis-
sion of this merit function from explicit use in the approximate optimization cycles can lead to synchronization
problems with the optimizer.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

9.6. SURROGATE-BASED OPTIMIZATION (SBO) 129

Table 9.2: Sample trust region ratio logic.
Ratio Value Surrogate Accuracy Iterate Acceptance Trust Region Sizing
ρk ≤ 0 poor reject step shrink

0 < ρk ≤ 0.25 marginal accept step shrink
0.25 < ρk < 0.75 or ρk > 1.25 moderate accept step retain

0.75 ≤ ρk ≤ 1.25 good accept step expand2

Once computed, the value forρk can be used to define the step acceptance and the next trust region size∆k+1

using logic similar to that shown in Table9.2. Typical factors for shrinking and expanding are 0.5 and 2.0,
respectively, but these as well as the threshold ratio values are tunable parameters in the algorithm (see SBO
strategy controls in the DAKOTA Reference Manual [29]). In addition, the use of discrete thresholds is not
required, and continuous relationships using adaptive logic can also be explored [107, 108]. Iterate acceptance or
rejection completes an SBO cycle, and the cycles are continued until either soft or hard convergence criteria (see
Section9.6.1) are satisfied.

9.6.1 Constraint Management in SBO

Iterate acceptance logic

Figure 9.7: Depiction of filter
method.

When a surrogate optimization is completed and the approximate solution
has been validated, then the decision must be made to either accept or reject
the step. The traditional approach is to base this decision on the value of the
trust region ratio, as outlined previously in Table9.2. An alternate approach
is to utilize a filter method [40], which does not require penalty parameters
or Lagrange multiplier estimates. The basic idea in a filter method is to ap-
ply the concept of Pareto optimality to the objective function and constraint
violations and only accept an iterate if it is not dominated by any previous
iterate. Mathematically, a new iterate is not dominated if at least one of the
following:

either f < f (i) or c < c(i) (9.9)

is true for alli in the filter, wherec is a selected norm of the constraint vi-
olation. This basic description can be augmented with mild requirements to
prevent point accumulation and assure convergence, known as a slanting fil-
ter [40]. Figure9.7 illustrates the filter concept, where objective values are
plotted against constraint violation for accepted iterates (blue circles) to define the dominated region (denoted by
the gray lines). A filter method relaxes the common enforcement of monotonicity in constraint violation reduction
and, by allowing more flexibility in acceptable step generation, often allows the algorithm to be more efficient.

The use of a filter method is compatible with any of the SBO formulations in Eqs.9.4–9.7.

Merit functions

The merit functionΦ(x) used in Eqs.9.4-9.6,9.8 may be selected to be a penalty function, an adaptive penalty
function, a Lagrangian function, or an augmented Lagrangian function. In each of these cases, the more flexible
inequality and equality constraint formulations with two-sided bounds and targets (Eqs.9.3,9.5-9.7), have been

2Exception: retain ifxk
∗ in trust region interior for design of experiments-based surrogates (global data fits, S-ROM, global E-ROM)

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

130 CHAPTER 9. ADVANCED OPTIMIZATION STRATEGIES

converted to a standard form ofg(x) ≤ 0 andh(x) = 0 (in Eqs.9.10,9.12-9.18). The active set of inequality
constraints is denoted asg+.

The penalty function employed in this paper uses a quadratic penalty with the penalty schedule linked to SBO
iteration number

Φ(x, rp) = f(x) + rpg+(x)Tg+(x) + rph(x)Th(x) (9.10)

rp = e(k+offset)/10 (9.11)

The adaptive penalty function is identical in form to Eq.9.10, but adaptsrp using monotonic increases in the
iteration offset value in order to accept any iterate that reduces the constraint violation.

The Lagrangian merit function is

Φ(x,λg,λh) = f(x) + λTg g+(x) + λThh(x) (9.12)

for which the Lagrange multiplier estimation is discussed in Section9.6.1. Away from the optimum, it is possible
for the least squares estimates of the Lagrange multipliers for active constraints to be zero, which equates to
omitting the contribution of an active constraint from the merit function. This is undesirable for tracking SBO
progress, so usage of the Lagrangian merit function is normally restricted to approximate subproblems and hard
convergence assessments.

The augmented Lagrangian employed in this paper follows the sign conventions described in [100]

Φ(x,λψ,λh, rp) = f(x) + λTψψ(x) + rpψ(x)Tψ(x) + λThh(x) + rph(x)Th(x) (9.13)

ψi = max
{
gi,−

λψi

2rp

}
(9.14)

whereψ(x) is derived from the elimination of slack variables for the inequality constraints. In this case, simple
zeroth-order Lagrange multiplier updates may be used:

λk+1
ψ = λkψ + 2rpψ(x) (9.15)

λk+1
h = λkh + 2rph(x) (9.16)

The updating of multipliers and penalties is carefully orchestrated [16] to drive reduction in constraint violation of
the iterates. The penalty updates can be more conservative than in Eq.9.11, often using an infrequent application
of a constant multiplier rather than a fixed exponential progression.

Convergence assessment

To terminate the SBO process, hard and soft convergence metrics are monitored. It is preferable for SBO studies
to satisfy hard convergence metrics, but this is not always practical (e.g., when gradients are unavailable or un-
reliable). Therefore, simple soft convergence criteria are also employed which monitor for diminishing returns
(relative improvement in the merit function less than a tolerance for some number of consecutive iterations).

To assess hard convergence, one calculates the norm of the projected gradient of a merit function whenever the
feasibility tolerance is satisfied. The best merit function for this purpose is the Lagrangian merit function from
Eq. 9.12. This requires a least squares estimation for the Lagrange multipliers that best minimize the projected
gradient:

∇xΦ(x,λg,λh) = ∇xf(x) + λTg∇xg+(x) + λTh∇xh(x) (9.17)

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

9.6. SURROGATE-BASED OPTIMIZATION (SBO) 131

where gradient portions directed into active global variable bounds have been removed. This can be posed as a
linear least squares problem for the multipliers:

Aλ = −∇xf (9.18)

whereA is the matrix of active constraint gradients,λg is constrained to be non-negative, andλh is unrestricted
in sign. To estimate the multipliers using non-negative and bound-constrained linear least squares, the NNLS and
BVLS routines [69] from NETLIB are used, respectively.

Constraint relaxation

The goal of constraint relaxation is to achieve efficiency through the balance of feasibility and optimality when
the trust region restrictions prevent the location of feasible solutions to constrained approximate subproblems
(Eqs.9.5-9.7, and other formulations from rows 2-3 in Table9.1). The SBO algorithm starting from infeasible
points will commonly generate iterates which seek to satisfy feasibility conditions without regard to objective
reduction [78].

One approach for achieving this balance is to userelaxed constraintswhen iterates are infeasible with respect to
the surrogate constraints. We follow Perez, Renaud, and Watson [79], and use aglobal homotopymapping the
relaxed constraints and the surrogate constraints. For formulations in Eqs.9.5and9.7 (and others from row 3 in
Table9.1), the relaxed constraints are defined from

g̃k(x, τ) = ĝk(x) + (1− τ)bg (9.19)

h̃k(x, τ) = ĥk(x) + (1− τ)bh (9.20)

For Eq.9.6(and others from row 2 in Table9.1), the original surrogate constraintsĝk(x) andĥk(x) in Eqs.9.19-
9.20are replaced with their linearized forms (ĝk(xkc) +∇ĝk(xkc)

T (x− xkc) andĥk(xkc) +∇ĥk(xkc)
T (x− xkc),

respectively). The approximate subproblem is then reposed using the relaxed constraints as

minimize f̂k(x) or Φ̂k(x)
subject to gl ≤ g̃k(x, τk) ≤ gu

h̃k(x, τk) = ht
‖ x− xkc ‖∞ ≤ ∆k (9.21)

in place of the corresponding subproblems in Eqs.9.5-9.7. Alternatively, since the relaxation terms are constants
for thekth iteration, it may be more convenient for the implementation to constrainĝk(x) andĥk(x) (or their
linearized forms) subject to relaxed bounds and targets (g̃kl , g̃ku, h̃kt). The parameterτ is the homotopy parameter
controlling the extent of the relaxation: whenτ = 0, the constraints are fully relaxed, and whenτ = 1, the
surrogate constraints are recovered. The vectorsbg,bh are chosen so that the starting point,x0, is feasible with
respect to the fully relaxed constraints:

gl ≤ g̃0(x0, 0) ≤ gu (9.22)

h̃0(x0, 0) = ht (9.23)

At the start of the SBO algorithm,τ0 = 0 if x0 is infeasible with respect to the unrelaxed surrogate constraints;
otherwiseτ0 = 1 (i.e., no constraint relaxation is used). At the start of thekth SBO iteration whereτk−1 < 1, τk

is determined by solving the subproblem

maximize τk

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

132 CHAPTER 9. ADVANCED OPTIMIZATION STRATEGIES

subject to gl ≤ g̃k(x, τk) ≤ gu
h̃k(x, τk) = ht

‖ x− xkc ‖∞ ≤ ∆k

τk ≥ 0 (9.24)

starting at(xk−1
∗ , τk−1), and then adjusted as follows:

τk = min
{
1, τk−1 + α

(
τkmax − τk−1

)}
(9.25)

The adjustment parameter0 < α < 1 is chosen so that that the feasible region with respect to the relaxed
constraints has positive volume within the trust region. Determining the optimal value forα remains an open
question and will be explored in future work.

After τk is determined using this procedure, the problem in Eq.9.21is solved forxk∗. If the step is accepted, then
the value ofτk is updated using the current iteratexk∗ and the validated constraintsg(xk∗) andh(xk∗):

τk = min {1,mini τi,minj τj} (9.26)

where τi = 1 +
min{gi(x

k
∗)−gli

,gui
−gi(x

k
∗)}

bgi
(9.27)

τj = 1− |hj(x
k
∗)−htj

|
bhj

(9.28)

Figure 9.8: Illustration of SBO iterates
using surrogate (red) and relaxed (blue)
constraints.

Figure9.8 illustrates the SBO algorithm on a two-dimensional prob-
lem with one inequality constraint starting from an infeasible point,x0.
The minimizer of the problem is denoted asx∗. Iterates generated using
the surrogate constraints are shown in red, where feasibility is achieved
first, and then progress is made toward the optimal point. The iterates
generated using the relaxed constraints are shown in blue, where a bal-
ance of satisfying feasibility and optimality has been achieved, leading
to fewer overall SBO iterations.

The behavior illustrated in Fig.9.8 is an example where using the re-
laxed constraints over the surrogate constraints may improve the overall
performance of the SBO algorithm by reducing the number of itera-
tions performed. This improvement comes at the cost of solving the
minimization subproblem in Eq.9.24, which can be significant in some
cases (i.e., when the cost of evaluatingĝk(x) andĥk(x) is not negligi-
ble, such as with multifidelity or ROM surrogates). As shown in the numerical experiments involving the Barnes
problem presented at the end of this paper, the directions toward constraint violation reduction and objective func-
tion reduction may be in opposing directions. In such cases, the use of the relaxed constraints may result in an
increasein the overall number of SBO iterations since feasibility must ultimately take precedence.

9.6.2 SBO with Data Fits

When performing SBO with local, multipoint, and global data fit surrogates, it is necessary to regenerate or
update the data fit for each new trust region. In the global data fit case, this can mean performing a new design
of experiments on the original high-fidelity model for each trust region, which can effectively limit the approach
to use on problems with, at most, tens of variables. Figure9.9displays this case. However, an important benefit
of the global sampling is that the global data fits can tame poorly-behaved, nonsmooth, discontinuous response
variations within the original model into smooth, differentiable, easily navigated surrogates. This allows SBO
with global data fits to extract the relevant global design trends from noisy simulation data.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

9.6. SURROGATE-BASED OPTIMIZATION (SBO) 133

Figure 9.9: SBO iteration pro-
gression for global data fits.

When enforcing local consistency between a global data fit surrogate and a
high-fidelity model at a point, care must be taken to balance this local con-
sistency requirement with the global accuracy of the surrogate. In particular,
performing a correction on an existing global data fit in order to enforce lo-
cal consistency can skew the data fit and destroy its global accuracy. One
approach for achieving this balance is to include the consistency requirement
within the data fit process by constraining the global data fit calculation (e.g.,
using constrained linear least squares). This allows the data fit to satisfy the
consistency requirement while still addressing global accuracy with its re-
maining degrees of freedom. Embedding the consistency within the data fit
also reduces the sampling requirements. For example, a quadratic polyno-
mial normally requires at least(n + 1)(n + 2)/2 samples forn variables to
perform the fit. However, with embedded first-order consistency constraints,
the minimum number of samples is reduced byn+ 1 to (n2 + n)/2.

In the local and multipoint data fit cases, the iteration progression will appear
as in Fig.9.11. Both cases involve a single new evaluation of the original
high-fidelity model per trust region, with the distinction that multipoint approximations reuse information from
previous SBO iterates. Like model hierarchy surrogates, these techniques scale to larger numbers of design vari-
ables. Unlike model hierarchy surrogates, they generally do not require surrogate corrections, since the matching
conditions are embedded in the surrogate form (as discussed for the global Taylor series approach above). The
primary disadvantage to these surrogates is that the region of accuracy tends to be smaller than for global data
fits and multifidelity surrogates, requiring more SBO cycles with smaller trust regions. More information on the
design of experiments methods is available in Chapter5, and the data fit surrogates are described in Section10.3.1.

Figure9.10shows a DAKOTA input file that implements surrogate-based optimization on Rosenbrock’s function.
This input file is nameddakota sbo rosen.in in the /Dakota/test directory. The strategy keyword
block contains the SBO strategy keywordsurrogate based opt , plus the commands for specifying the trust
region size and scaling factors. The optimization portion of SBO is specified in the following keyword blocks for
method , model , variables , andresponses , where the model used by the optimization method specifies
that a global surrogate will be used to map variables into responses (nointerface specification is used by
the surrogate model). The global surrogate is constructed using a DACE method which is identified with the
‘SAMPLING’ identifier. This data sampling portion of SBO is specified in the final set of keyword blocks
for method , model , interface , andresponses (the earliervariables specification is reused). This
example problem uses the Latin hypercube sampling method in the LHS software to select 10 design points in
each trust region. A single surrogate model is constructed for the objective function using a quadratic polynomial.
The initial trust region is centered at the design point(x1, x2) = (−1.2, 1.0), and extends±0.4 (10% of the global
bounds) from this point in thex1 andx2 coordinate directions.

If this input file is executed in DAKOTA, it will converge to the optimal design point at(x1, x2) = (1, 1) in
approximately 1000 function evaluations. While this solution is correct, it is obtained at a much higher cost than
a traditional gradient-based optimizer (e.g., see the results obtained fromdakota rosenbrock.in). This
demonstrates that the SBO strategy with global data fits is not really intended for use with smooth continuous
optimization problems; direct gradient-based optimization can be more efficient for such applications. Rather,
SBO with global data fits is best-suited for the types of problems that occur in engineering design where the
response quantities may be discontinuous, nonsmooth, or may have multiple local optima [49]. In these types of
engineering design problems, traditional gradient-based optimizers often are ineffective, whereas global data fits
can extract the global trends of interest despite the presence of local nonsmoothness (for an example problem with
multiple local optima, look in/Dakota/test for the filedakota sbo sine fcn.in [50]).

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

134 CHAPTER 9. ADVANCED OPTIMIZATION STRATEGIES

strategy, \
surrogate_based_opt \
tabular_graphics_data \
max_iterations = 10000 \
opt_method_pointer = ’NLP’ \
trust_region \

initial_size = 0.10 \
minimum_size = 1.0e-6 \
contract_threshold = 0.25 \
expand_threshold = 0.75 \
contraction_factor = 0.50 \
expansion_factor = 1.50

method, \
id_method = ’NLP’ \
model_pointer = ’SURROGATE’ \
conmin_frcg, \

max_iterations = 50, \
convergence_tolerance = 1e-8

model, \
id_model = ’SURROGATE’ \
surrogate global \

responses_pointer = ’SURROGATE_RESP’ \
dace_method_pointer = ’SAMPLING’ \
correction additive zeroth_order \
polynomial quadratic \

variables, \
continuous_design = 2 \

cdv_initial_point -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptor ’x1’ ’x2’

responses, \
id_responses = ’SURROGATE_RESP’ \
num_objective_functions = 1 \
numerical_gradients \

method_source dakota \
interval_type central \
fd_gradient_step_size = 1.e-6 \

no_hessians

method, \
id_method = ’SAMPLING’ \
model_pointer = ’TRUTH’ \
nond_sampling \

samples = 10 \
seed = 531 \
sample_type lhs \
all_variables

model, \
id_model = ’TRUTH’ \
single \

interface_pointer = ’TRUE_FN’ \
responses_pointer = ’TRUE_RESP’

interface, \
direct \
id_interface = ’TRUE_FN’ \

analysis_driver = ’rosenbrock’

responses, \
id_responses = ’TRUE_RESP’ \
num_objective_functions = 1 \
no_gradients \
no_hessians \

Figure 9.10: DAKOTA input file for the surrogate-based optimization example.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

9.6. SURROGATE-BASED OPTIMIZATION (SBO) 135

9.6.3 SBO with Multifidelity Models

Figure 9.11: SBO iteration pro-
gression for model hierarchies.

When performing SBO with model hierarchies, the low-fidelity model is nor-
mally fixed, requiring only a single high-fidelity evaluation to compute a new
correction for each new trust region. Figure9.11 displays this case. This
renders the multifidelity SBO technique more scalable to larger numbers of
design variables since the number of high-fidelity evaluations per iteration
(assuming no finite differencing for derivatives) is independent of the scale
of the design problem. However, the ability to smooth poorly-behaved re-
sponse variations in the high-fidelity model is lost, and the technique be-
comes dependent on having a well-behaved low-fidelity model3. In addition,
the parameterizations for the low and high-fidelity models may differ, requir-
ing the use of a mapping between these parameterizations. Space mapping,
corrected space mapping, POD mapping, and hybrid POD space mapping are
being explored for this purpose [84, 85].

When applying corrections to the low-fidelity model, there is no concern for
balancing global accuracy with the local consistency requirements. However,
with only a single high-fidelity model evaluation at the center of each trust
region, it is critical to use the best correction possible on the low-fidelity
model in order to achieve rapid convergence rates to the optimum of the high-fidelity model [31].

A multifidelity test problem nameddakota sbo hierarchical.in is available in/Dakota/test to
demonstrate this SBO approach. This test problem uses the Rosenbrock function as the high fidelity model and
a function named “lfrosenbrock” as the low fidelity model. Here, lfrosenbrock is a variant of the Rosenbrock
function (see/Dakota/test/lf rosenbrock.C for formulation) with the minimum point at(x1, x2) =
(0.80, 0.44), whereas the minimum of the original Rosenbrock function is(x1, x2) = (1, 1). Multifidelity SBO
locates the high-fidelity minimum in 11 high fidelity evaluations for additive second-order corrections and in
208 high fidelity evaluations for additive first-order corrections, but fails for zeroth-order additive corrections by
converging to the low-fidelity minimum.

9.6.4 SBO with Reduced Order Models

When performing SBO with reduced-order models (ROMs), the ROM is mathematically generated from the high-
fidelity model. A critical issue in this ROM generation is the ability to capture the effect of parametric changes
within the ROM. Two approaches to parametric ROM are extended ROM (E-ROM) and spanning ROM (S-ROM)
techniques [104]. Closely related techniques include tensor singular value decomposition (SVD) methods [68].
In the single-point and multipoint E-ROM cases, the SBO iteration can appear as in Fig.9.11, whereas in the
S-ROM, global E-ROM, and tensor SVD cases, the SBO iteration will appear as in Fig.9.9. In addition to the
high-fidelity model analysis requirements, procedures for updating the system matrices and basis vectors are also
required.

Relative to data fits and multifidelity models, ROMs have some attractive advantages. Compared to data fits such
as regression-based polynomial models, they are more physics-based and would be expected to be more predictive
(e.g., in extrapolating away from the immediate data). Compared to multifidelity models, ROMS may be more
practical in that they do not require multiple computational models or meshes which are not always available. The
primary disadvantage is potential invasiveness to the simulation code for projecting the system using the reduced
basis.

3It is also possible to use a hybrid data fit/multifidelity approach in which a smooth data fit of a noisy low fidelity model is used in
combination with a high fidelity model

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

136 CHAPTER 9. ADVANCED OPTIMIZATION STRATEGIES

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 10

Models

10.1 Overview

Chapters4 through8 have presented the different “iterators” available in DAKOTA. An iterator iterates on a model
in order to map a set of variables into a set of responses. This model may involve a simple mapping involving a
single interface, or it may involve recursions using sub-iterator and sub-models. These recursion capabilities were
developed in order to provide mechanisms for “nesting” and “layering” of software components, which allows
the use of these components as building blocks to accomplish more sophisticated studies, such as surrogate-based
optimization or optimization under uncertainty. In a nested relationship, a sub-iterator is executed using its sub-
model for every evaluation of the nested model. In a layered relationship, on the other hand, sub-iterators and
sub-models are used only for periodic updates and verifications. In both cases, the sub-model is of arbitrary type,
such that model recursions can be chained together in as long of a sequence as needed (e.g., layered containing
nested contained layered containing single in Section10.5.2). Figure10.1displays the model class hierarchy from
the DAKOTA Developers Manual [30], with derived classes for single models, nested models, and three types of
surrogate models: data fit, hierarchical/multifidelity, and reduced-order models (ROM; not yet available in 4.0).

Section10.2describes single models; Section10.3describes surrogate models of the data fit, multifidelity, and
ROM type; and Section10.4 describes nested models. Finally, Section10.5 presents a number of advanced
examples demonstrating model recursion.

Figure 10.1: The DAKOTA model class hierarchy.

138 CHAPTER 10. MODELS

10.2 Single Models

The single model is the simplest model type. It uses a single interface instance (see Chapter12) to map variables
(see Chapter11) into responses (see Chapter13). There is no recursion in this case. Refer to the Models chapter
in the DAKOTA Reference Manual [29] for additional information on the single model specification.

10.3 Surrogate Models

Surrogate models provide an approximation to an original, high fidelity “truth” model. A number of surrogate
model selections are possible, which are categorized as data fits, multifidelity models, and reduced-order models.

Each of the surrogate model types supports the use of correction factors that improve the local accuracy of the
surrogate models. The correction factors force the surrogate models to match the true function values and possibly
true function derivatives at the center point of each trust region. Currently, DAKOTA supports either zeroth-, first-,
or second-order accurate correction methods, each of which can be applied using either an additive, multiplicative,
or combined correction function. For each of these correction approaches, the correction is applied to the surrogate
model and the corrected model is then interfaced with whatever algorithm is being employed. The default behavior
is that no correction factor is applied.

The simplest correction approaches are those that enforce consistency in function values between the surrogate
and original models at a single point in parameter space through use of a simple scalar offset or scaling applied
to the surrogate model. First-order corrections such as the first-order multiplicative correction (also known as
beta correction [13]) and the first-order additive correction [70] also enforce consistency in the gradients and
provide a much more substantial correction capability that is sufficient for ensuring provable convergence in SBO
algorithms (see Section9.6). SBO convergence rates can be further accelerated through the use of second-order
corrections which also enforce consistency in the Hessians [31], where the second-order information may involve
analytic, finite-difference, or quasi-Newton Hessians.

Correcting surrogate models with additive corrections involves

ˆfhiα(x) = flo(x) + α(x) (10.1)

where multifidelity notation has been adopted for clarity. For multiplicative approaches, corrections take the form

ˆfhiβ (x) = flo(x)β(x) (10.2)

where, for local corrections,α(x) andβ(x) are first or second-order Taylor series approximations to the exact
correction functions:

α(x) = A(xc) +∇A(xc)T (x− xc) +
1
2
(x− xc)T∇2A(xc)(x− xc) (10.3)

β(x) = B(xc) +∇B(xc)T (x− xc) +
1
2
(x− xc)T∇2B(xc)(x− xc) (10.4)

where the exact correction functions are

A(x) = fhi(x)− flo(x) (10.5)

B(x) =
fhi(x)
flo(x)

(10.6)

Refer to [31] for additional details on the derivations.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

10.3. SURROGATE MODELS 139

A combination of additive and multiplicative corrections can provide for additional flexibility in minimizing the
impact of the correction away from the trust region center. In other words, both additive and multiplicative
corrections can satisfy local consistency, but through the combination, global accuracy can be addressed as well.
This involves a convex combination of the additive and multiplicative corrections:

ˆfhiγ (x) = γ ˆfhiα(x) + (1− γ) ˆfhiβ (x) (10.7)

whereγ is calculated to satisfy an additional matching condition, such as matching values at the previous design
iterate.

10.3.1 Data Fit Surrogate Models

A surrogate of thedata fit type is a non-physics-based approximation typically involving interpolation or re-
gression of a set of data generated from the original model. Data fit surrogates can be further characterized by
the number of data points used in the fit, where a local approximation (e.g., first or second-order Taylor series)
uses data from a single point, a multipoint approximation (e.g., two-point exponential approximations (TPEA) or
two-point adaptive nonlinearity approximations (TANA)) uses a small number of data points often drawn from
the previous iterates of a particular algorithm, and a global approximation (e.g., polynomial response surfaces,
kriging, neural networks, radial basis functions, splines) uses a set of data points distributed over the domain of
interest, often generated using a design of computer experiments.

DAKOTA contains several types of surface fitting methods that can be used with optimization and uncertainty
quantification methods and strategies such as surrogate-based optimization and optimization under uncertainty.
These are: polynomial models (linear, quadratic, and cubic), first-order Taylor series expansion, kriging spatial
interpolation, artificial neural networks, and multivariate adaptive regression splines. All of these surface fitting
methods can be applied to problems having an arbitrary number of design parameters. However, surface fitting
methods usually are practical only for problems where there are a small number of parameters (e.g., a maximum
of somewhere in the range of 30-50 design parameters). The mathematical models created by surface fitting
methods have a variety of names in the engineering community. These include surrogate models, meta-models,
approximation models, and response surfaces. For this manual, the terms surface fit model and surrogate model
are used.

The data fitting methods in DAKOTA include software developed by Sandia researchers and by various re-
searchers in the academic community.

Procedures for Surface Fitting

The surface fitting process consists of three steps: (1) selection of a set of design points, (2) evaluation of the true
response quantities (e.g., from a user-supplied simulation code) at these design points, and (3) using the response
data to solve for the unknown coefficients (e.g., polynomial coefficients, neural network weights, kriging correla-
tion factors) in the surface fit model. In cases where there is more than one response quantity (e.g., an objective
function plus one or more constraints), then a separate surface is built for each response quantity. Currently, the
surface fit models are built using only 0th-order information (function values only), although extensions to using
higher-order information (gradients and Hessians) are possible. Each surface fitting method employs a different
numerical method for computing its internal coefficients. For example, the polynomial surface uses a least-squares
approach that employs a singular value decomposition to compute the polynomial coefficients, whereas the krig-
ing surface uses Maximum Likelihood Estimation to compute its correlation coefficients. More information on
the numerical methods used in the surface fitting codes is provided in the DAKOTA Developers Manual [30].

The set of design points that is used to construct a surface fit model is generated using either the DDACE software
package [96] or the LHS software package [63]. These packages provide a variety of sampling methods including

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

140 CHAPTER 10. MODELS

Monte Carlo (random) sampling, Latin hypercube sampling, orthogonal array sampling, central composite design
sampling, and Box-Behnken sampling. More information on these software packages is provided in Chapter5.

Taylor Series

The Taylor series model is purely a local approximation method. That is, it provides local trends in the vicinity of
a single point in parameter space. The first-order Taylor series expansion is:

f̂(x) ≈ f(x0) +∇xf(x0)T (x− x0) (10.8)

and the second-order expansion is:

f̂(x) ≈ f(x0) +∇xf(x0)T (x− x0) +
1
2
(x− x0)T∇2

xf(x0)(x− x0) (10.9)

wherex0 is the expansion point inn-dimensional parameter space andf(x0), ∇xf(x0), and∇2
xf(x0) are the

computed response value, gradient, and Hessian at the expansion point, respectively. As dictated by the responses
specification used in building the local surrogate, the gradient may be analytic or numerical and the Hessian may
be analytic, numerical, or based on quasi-Newton secant updates.

In general, the Taylor series model is accurate only in the region of parameter space that is close tox0 . While the
accuracy is limited, the first-order Taylor series model reproduces the correct value and gradient at the pointx0,
and the second-order Taylor series model reproduces the correct value, gradient, and Hessian. This consistency is
useful in provably-convergent surrogate-based optimization. The other surface fitting methods do not use gradient
information directly in their models, and these methods rely on an external correction procedure in order to satisfy
the consistency requirements of provably-convergent SBO.

Two Point Adaptive Nonlinearity Approximation

The TANA-3 method [109] is a multipoint approximation method based on the two point exponential approxima-
tion [38]. This approach involves a Taylor series approximation in intermediate variables where the powers used
for the intermediate variables are selected to match information at the current and previous expansion points. The
form of the TANA model is:

f̂(x) ≈ f(x2) +
n∑
i=1

∂f

∂xi
(x2)

x1−pi

i,2

pi
(xpi

i − xpi

i,2) +
1
2
ε(x)

n∑
i=1

(xpi

i − xpi

i,2)
2 (10.10)

wheren is the number of variables and:

pi = 1 + ln

[
∂f
∂xi

(x1)
∂f
∂xi

(x2)

]/
ln
[
xi,1
xi,2

]
(10.11)

ε(x) =
H∑n

i=1(x
pi

i − xpi

i,1)2 +
∑n
i=1(x

pi

i − xpi

i,2)2
(10.12)

H = 2

[
f(x1)− f(x2)−

n∑
i=1

∂f

∂xi
(x2)

x1−pi

i,2

pi
(xpi

i,1 − xpi

i,2)

]
(10.13)

andx2 andx1 are the current and previous expansion points. Prior to the availability of two expansion points, a
first-order Taylor series is used.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

10.3. SURROGATE MODELS 141

Linear, Quadratic, and Cubic Polynomial Models

Linear, quadratic, and cubic polynomial models are available in DAKOTA. The form of the linear polynomial
model is

f̂(x) ≈ c0 +
n∑
i=1

cixi (10.14)

the form of the quadratic polynomial model is:

f̂(x) ≈ c0 +
n∑
i=1

cixi +
n∑
i=1

n∑
j≥i

cijxixj (10.15)

and the form of the cubic polynomial model is:

f̂(x) ≈ c0 +
n∑
i=1

cixi +
n∑
i=1

n∑
j≥i

cijxixj +
n∑
i=1

n∑
j≥i

n∑
k≥j

cijkxixjxk (10.16)

In all of the polynomial models,̂f(x) is the response of the polynomial model; thexi, xj , xk terms are the com-
ponents of then-dimensional design parameter values; thec0 , ci , cij , cijk terms are the polynomial coefficients,
andn is the number of design parameters. The number of coefficients,nc, depends on the order of polynomial
model and the number of design parameters. For the linear polynomial:

nclinear
= n+ 1 (10.17)

for the quadratic polynomial:

ncquad
=

(n+ 1)(n+ 2)
2

(10.18)

and for the cubic polynomial:

nccubic
=

(n3 + 6n2 + 11n+ 6)
6

(10.19)

There must be at leastnc data samples in order to form a fully determined linear system and solve for the poly-
nomial coefficients. In DAKOTA, a least-squares approach involving a singular value decomposition numerical
method is applied to solve the linear system.

The utility of the polynomial models stems from two sources: (1) over a small portion of the parameter space, a
low-order polynomial model is often an accurate approximation to the true data trends, and (2) the least-squares
procedure provides a surface fit that smooths out noise in the data. For this reason, the surrogate-based opti-
mization strategy often is successful when using polynomial models, particularly quadratic models. However, a
polynomial surface fit may not be the best choice for modeling data trends over the entire parameter space, unless
it is known a priori that the true data trends are close to linear, quadratic, or cubic. See [74] for more information
on polynomial models.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

142 CHAPTER 10. MODELS

Kriging Spatial Interpolation Models

The kriging method uses techniques developed in the geostatistics and spatial statistics communities ([17], [66])
to produce smooth,C2-continuous surface fit models of the response values from a set of data points. The form
of the kriging model is

f̂(x) ≈ β + rTR−1(f − βe) (10.20)

wherex is the current point inn-dimensional parameter space; is the estimate of the mean response value,r
is the correlation vector of terms betweenx and the data points,R is the correlation matrix for all of the data
points,f is the vector of response values, ande is a vector with all values set to one. The terms in the correlation
vector and matrix are computed using a Gaussian correlation function and are dependent on ann-dimensional
vector of correlation parameters,Θ = {θ1, . . . , θn}. In DAKOTA, a Maximum Likelihood Estimation procedure
is performed to compute the correlation parameters for the kriging model. More detail on this kriging approach
may be found in [51].

The kriging interpolation model is a nonparametric surface fitting approach. That is, the kriging surface does not
assume that there is an underlying trend in the response data. This is in contrast to the quadratic polynomial model
and the linear Taylor series model. Since the kriging model is nonparametric, it can be used to model surfaces
with slope discontinuities along with multiple local minima and maxima. Kriging interpolation is useful for both
SBO and OUU, as well as for studying the global response value trends in the parameter space. This surface
fitting method can be constructed using a minimum ofnclinear

design points, but it is recommended to use at least
ncquad

design points when possible (refer to Section10.3.1for nc definitions).

The kriging model is guaranteed to pass through all of the response data values that are used to construct the
model. Generally, this is a desirable feature. However, if there is considerable numerical noise in the response
data, then a surface fitting method that provides some data smoothing (e.g., quadratic polynomial, MARS) may be
a better choice for SBO and OUU applications. Another feature of the kriging model is that the predicted response
values,f̂(x), decay to the mean value,β, whenx is far from any of the data points from which the kriging model
was constructed (i.e., when the model is used for extrapolation). This is neither a positive nor a negative aspect
of kriging, but rather a different behavior than is exhibited by the other surface fitting methods. One drawback
to the kriging model is that data points in close proximity lead to ill-conditioning in the numerical procedure
and the kriging software will terminate if such a situation occurs. For this reason, the user is advised to avoid
sample reuse (reuse samples = region andreuse samples = all specifications) when performing
surrogate-based optimization.

Artificial Neural Network (ANN) Models

The ANN surface fitting method in DAKOTA employs a stochastic layered perceptron (SLP) artificial neural
network based on the direct training approach of Zimmerman [110]. The SLP ANN method is designed to have
a lower training cost than traditional ANNs. This is a useful feature for SBO and OUU where new ANNs are
constructed many times during the optimization process (i.e., one ANN for each response function, and new
ANNs for each optimization iteration). The form of the SLP ANN model is

f̂(x) ≈ tanh(tanh((xA0 + θ0)A1 + θ1)) (10.21)

wherex is the current point inn-dimensional parameter space, and the termsA0, θ0,A1, θ1 are the matrices and
vectors that correspond to the neuron weights and offset values in the ANN model. These terms are computed
during the ANN training process, and are analogous to the polynomial coefficients in a quadratic surface fit. A

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

10.3. SURROGATE MODELS 143

singular value decomposition method is used in the numerical methods that are employed to solve for the weights
and offsets.

The SLP ANN is a non parametric surface fitting method. Thus, along with kriging and MARS, it can be used
to model data trends that have slope discontinuities as well as multiple maxima and minima. However, unlike
kriging, the ANN surface is not guaranteed to exactly match the response values of the data points from which
it was constructed. This ANN can be used with SBO and OUU strategies. As with kriging, this ANN can be
constructed from fewer thanncquad

data points, however, it is a good rule of thumb to use at leastncquad
data

points when possible.

Multivariate Adaptive Regression Spline (MARS) Models

This surface fitting method uses multivariate adaptive regression splines from the MARS3.5 package [42] de-
veloped at Stanford University. Currently, access to the MARS software is provided through the DDACE pack-
age [96].

The form of the MARS model is based on the following expression:

f̂(x) =
M∑
m=1

amBm(x) (10.22)

where theam are the coefficients of the truncated power basis functionsBm, andM is the number of basis
functions. The MARS software partitions the parameter space into subregions, and then applies forward and
backward regression methods to create a local surface model in each subregion. The result is that each subregion
contains its own basis functions and coefficients, and the subregions are joined together to produce a smooth,
C2-continuous surface model.

MARS is a nonparametric surface fitting method and can represent complex multimodal data trends. The regres-
sion component of MARS generates a surface model that is not guaranteed to pass through all of the response
data values. Thus, like the quadratic polynomial model, it provides some smoothing of the data. The MARS ref-
erence material does not indicate the minimum number of data points that are needed to create a MARS surface
model. However, in practice it has been found that at leastncquad

, and sometimes as many as 2 to 4 timesncquad
,

data points are needed to keep the MARS software from terminating. Provided that sufficient data samples can
be obtained, MARS surface models can be useful in SBO and OUU applications, as well as in the prediction of
global trends throughout the parameter space.

10.3.2 Multifidelity Surrogate Models

A second type of surrogate is themodel hierarchytype (also called multifidelity, variable fidelity, variable com-
plexity, etc.). In this case, a model that is still physics-based but is of lower fidelity (e.g., coarser discretization,
reduced element order, looser convergence tolerances, omitted physics) is used as the surrogate in place of the
high-fidelity model. For example, an inviscid, incompressible Euler CFD model on a coarse discretization could
be used as a low-fidelity surrogate for a high-fidelity Navier-Stokes model on a fine discretization.

10.3.3 Reduced Order Models

A third type of surrogate model involvesreduced-order modelingtechniques such as proper orthogonal decompo-
sition (POD) in computational fluid dynamics (also known as principal components analysis or Karhunen-Loeve

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

144 CHAPTER 10. MODELS

in other fields) or spectral decomposition (also known as modal analysis) in structural dynamics. These surrogate
models are generated directly from a high-fidelity model through the use of a reduced basis (e.g., eigenmodes for
modal analysis or left singular vectors for POD) and projection of the original high-dimensional system down to a
small number of generalized coordinates. These surrogates are still physics-based (and may therefore have better
predictive qualities than data fits), but do not require multiple system models of varying fidelity (as required for
model hierarchy surrogates).

10.4 Nested Models

Nested models utilize a sub-iterator and a sub-model to perform a complete iterative study as part of every evalu-
ation of the model. This sub-iteration accepts variables from the outer level, performs the sub-level analysis, and
computes a set of sub-level responses which are passed back up to the outer level. As described in the Models
chapter of the Reference Manual [29], mappings are employed for both the variable inputs to the sub-model and
the response outputs from the sub-model.

In the former variable mapping case, primary and secondary variable mapping specifications are used to map
from the top-level variables into the sub-model variables. These mappings support three possibilities in any
combination: (1) insertion of an active top-level variable value into an identified sub-model distribution parameter
for an identified active sub-model variable, (2) insertion of an active top-level variable value into an identified
active sub-model variable value, and (3) addition of an active top-level variable value as an inactive sub-model
variable, augmenting the active sub-model variables.

In the latter response mapping case, primary and secondary response mapping specifications are used to map from
the sub-model responses back to the top-level responses. These specifications provide real-valued multipliers that
are applied to the sub-iterator response results to define the outer level response set. These nested data results may
be combined with non-nested data through use of the “optional interface” component within nested models.

Several examples of nested model usage are provided in the following section.

10.5 Advanced Examples

The surrogate and nested model constructs admit a wide variety of multi-iterator, multi-model solution ap-
proaches. For example, optimization within optimization (for hierarchical multidisciplinary optimization), uncer-
tainty quantification within uncertainty quantification (for second-order probability), uncertainty quantification
within optimization (for optimization under uncertainty), and optimization within uncertainty quantification (for
uncertainty of optima) are all supported, with and without surrogate model indirection. Two important examples
are highlighted: second-order probability and optimization under uncertainty.

10.5.1 Second-order probability

Second-order probability approaches employ nested models to embed one uncertainty quantification (UQ) within
another. The outer level UQ is commonly linked to epistemic uncertainties (also known as reducible uncertainties)
resulting from a lack of knowledge, and the inner UQ is commonly linked to aleatory uncertainties (also known
as irreducible uncertainties) that are inherent in nature. The outer level generates sets of realizations, typically
from sampling within interval distributions. These realizations define values for distribution parameters used in
a probabilistic analysis for the inner level UQ. The term “second-order” derives from this use of distributions on

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

10.5. ADVANCED EXAMPLES 145

distributions and the generation of statistics on statistics. These approaches can be considered to be a special case
of imprecise probability theory.

A sample input file is shown in Figure10.2, in which the outer epistemic level samples uniformly to select means
for X andY that are employed in an inner level reliability analysis of the cantilever problem (see Section21.9).
Figure10.3shows excerpts from the resulting statistics on statistics, in particular the mean, standard deviation,
and cumulative distribution function for the stress and displacement reliability indices. It is important to note
that these outer level statistics are only meaningful to the extent that the outer level probabilities are meaningful
(which would not be the case for sampling from epistemic intervals, since the actual probabilities would not be
known to be uniform).

10.5.2 Optimization Under Uncertainty (OUU)

Optimization under uncertainty (OUU) approaches incorporate an uncertainty quantification method within the
optimization process. This is often needed in engineering design problems when one must include the effect of
input parameter uncertainties on the response functions of interest. A typical engineering example of OUU would
minimize the probability of failure of a structure for a set of applied loads, where there is uncertainty in the loads
and/or material properties of the structural components.

In OUU, a nondeterministic method is used to evaluate the effect of uncertain variable distributions on response
functions of interest (refer to Chapter6 for additional information on nondeterministic analysis). Statistics on
these response functions are then included in the objective and constraint functions of an optimization process. If
the UQ method is sampling based, then three approaches are currently supported: nested OUU, surrogate-based
OUU, and trust-region surrogate-based OUU. Additional details and computational results are provided in [32].

Another class of OUU algorithms is called reliability-based design optimization (RBDO). RBDO methods are
used to perform design optimization accounting for reliability metrics. The reliability analysis capabilities de-
scribed in Section6.3provide a rich foundation for exploring a variety of RBDO formulations. [27] investigated
bi-level, fully-analytic bi-level, and first-order sequential RBDO approaches employing underlying first-order
reliability assessments. [28] investigated fully-analytic bi-level and second-order sequential RBDO approaches
employing underlying second-order reliability assessments.

Each of these sampling-based and reliability-based OUU methods are overviewed in the following sections.

Nested OUU

In the case of a nested approach, the optimization loop is the outer loop which seeks to optimize a nondeterministic
quantity (e.g., minimize probability of failure). The uncertainty quantification (UQ) inner loop evaluates this
nondeterministic quantity (e.g., computes the probability of failure) for each optimization function evaluation.
Figure 10.4 depicts the nested OUU iteration whered are the design variables,u are the uncertain variables
characterized by probability distributions,ru(d,u) are the response functions from the simulation, andsu(d) are
the statistics generated from the uncertainty quantification on these response functions.

Figure10.5shows a DAKOTA input file for a nested OUU example problem that is based on the textbook test
problem. This input file is nameddakota ouu1 tb.in in the /Dakota/test directory. In this example,
the objective function contains two probability of failure estimates, and an inequality constraint contains another
probability of failure estimate. For this example, failure is defined to occur when one of the textbook response
functions exceeds its threshold value. The strategy keyword block at the top of the input file identifies this
as an OUU problem. The strategy keyword block is followed by the optimization specification, consisting of
the optimization method, the continuous design variables, and the response quantities that will be used by the

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

146 CHAPTER 10. MODELS

strategy, \
single_method \

method_pointer = ’EPISTEMIC’

method, \
id_method = ’EPISTEMIC’ \
model_pointer = ’EPIST_M’ \
nond_sampling \

samples = 50 seed = 12347 \
response_levels = 9.52 3.0 3.0

model, \
id_model = ’EPIST_M’ \
nested \

variables_pointer = ’EPIST_V’ \
sub_method_pointer = ’ALEATORY’ \
responses_pointer = ’EPIST_R’ \
primary_variable_mapping = ’X’ ’Y’ \
secondary_variable_mapping = ’mean’ ’mean’ \
primary_response_mapping = 1. 0. 0. 0. 0. 0. 0. 0. \

0. 0. 0. 0. 1. 0. 0. 0. \
0. 0. 0. 0. 0. 0. 0. 1.

variables, \
id_variables = ’EPIST_V’ \
uniform_uncertain = 2 \

uuv_lower_bounds 400. 800. \
uuv_upper_bounds 600. 1200. \
uuv_descriptor ’X_mean’ ’Y_mean’

responses, \
id_responses = ’EPIST_R’ \
num_response_functions = 3 \
response_descriptors = ’mean_wt’ ’ccdf_beta_s’ ’ccdf_beta_d’ \
no_gradients \
no_hessians

method, \
id_method = ’ALEATORY’ \
model_pointer = ’ALEAT_M’ \
nond_reliability \

mpp_search no_approx \
num_response_levels = 0 1 1 \
response_levels = 0.0 0.0 \
compute reliabilities \
complementary distribution

model, \
id_model = ’ALEAT_M’ \
single \

variables_pointer = ’ALEAT_V’ \
interface_pointer = ’ALEAT_I’ \
responses_pointer = ’ALEAT_R’

variables, \
id_variables = ’ALEAT_V’ \
continuous_design = 2 \

cdv_initial_point 2.4522 3.8826 \
cdv_descriptor ’beam_width’ ’beam_thickness’ \

normal_uncertain = 4 \
nuv_means = 40000. 29.E+6 500. 1000. \
nuv_std_deviations = 2000. 1.45E+6 100. 100. \
nuv_descriptor = ’R’ ’E’ ’X’ ’Y’

interface, \
id_interface = ’ALEAT_I’ \
direct \

analysis_driver = ’cantilever’ \
deactivate evaluation_cache restart_file

responses, \
id_responses = ’ALEAT_R’ \
num_response_functions = 3 \
response_descriptors = ’weight’ ’stress’ ’displ’ \
analytic_gradients \
no_hessians

Figure 10.2: DAKOTA input file for the second-order probability example.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

10.5. ADVANCED EXAMPLES 147

Statistics based on 50 samples:

Moments for each response function:
ccdf_beta_s: Mean = 2.99662e+00 Std. Dev. = 6.73852e-01

Coeff. of Variation = 2.24871e-01
ccdf_beta_d: Mean = 2.99634e+00 Std. Dev. = 5.54339e-01

Coeff. of Variation = 1.85005e-01

95% confidence intervals for each response function:
ccdf_beta_s: Mean = (2.80511e+00, 3.18812e+00),

Std Dev = (5.62892e-01, 8.39710e-01)
ccdf_beta_d: Mean = (2.83880e+00, 3.15388e+00),

Std Dev = (4.63058e-01, 6.90780e-01)

Probabilities for each response function:
Cumulative Distribution Function (CDF) for ccdf_beta_s:

Response Level Probability Level Reliability Index
-------------- ----------------- -----------------

3.0000000000e+00 4.6000000000e-01
Cumulative Distribution Function (CDF) for ccdf_beta_d:

Response Level Probability Level Reliability Index
-------------- ----------------- -----------------

3.0000000000e+00 4.2000000000e-01

Figure 10.3: Second-order statistics on reliability indices for cantilever problem.

Figure 10.4: Formulation 1: Nested OUU.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

148 CHAPTER 10. MODELS

optimizer. The mapping matrices used for incorporating UQ statistics into the optimization response data are
described in the DAKOTA Reference Manual [29]. The uncertainty quantification specification includes the UQ
method, the uncertain variable probability distributions, the interface to the simulation code, and the UQ response
attributes. As with other complex DAKOTA input files, the identification tags given in each keyword block can
be used to follow the relationships among the different keyword blocks.

Latin hypercube sampling is used as the UQ method in this example problem. Thus, each evaluation of the
response functions by the optimizer entails 50 Latin hypercube samples. In general, nested OUU studies can
easily generate several thousand function evaluations and gradient-based optimizers may not perform well due
to noisy or insensitive statistics resulting from under-resolved sampling. These observations motivate the use of
surrogate-based approaches to OUU.

Other nested OUU examples in the/Dakota/test directory includedakota ouu1 tbch.in , which adds
an additional interface for including deterministic data in the textbook OUU problem, and
dakota ouu1 cantilever.in , which solves the cantilever OUU problem (see Section21.9) with a nested
approach. For each of these files, the “1” identifies formulation 1, which is short-hand for the nested approach.

Surrogate-Based OUU (SBOUU)

Surrogate-based optimization under uncertainty strategies can be effective in reducing the expense of OUU stud-
ies. Possible formulations include use of a surrogate model at the optimization level, at the uncertainty quantifica-
tion level, or at both levels. These surrogate models encompass both data fit surrogates (at the optimization or UQ
level) and model hierarchy surrogates (at the UQ level only). Figure10.6depicts the different surrogate-based for-
mulations wherêru andŝu are approximate response functions and approximate response statistics, respectively,
generated from the surrogate models.

SBOUU examples in the/Dakota/test directory includedakota sbouu2 tbch.in ,
dakota sbouu3 tbch.in , anddakota sbouu4 tbch.in , which solve the textbook OUU problem, and
dakota sbouu2 cantilever.in , dakota sbouu3 cantilever.in , and
dakota sbouu4 cantilever.in , which solve the cantilever OUU problem (see Section21.9). For each
of these files, the “2,” “ 3,” and “4” identify formulations 2, 3, and 4, which are short-hand for the “layered
containing nested,” “nested containing layered,” and “layered containing nested containing layered” surrogate-
based formulations, respectively. In general, the use of surrogates greatly reduces the computational expense of
these OUU study. However, without restricting and verifying the steps in the approximate optimization cycles,
weaknesses in the data fits can be exploited and poor solutions may be obtained. The need to maintain accuracy
of results leads to the use of trust-region surrogate-based approaches.

Trust-Region Surrogate-Based OUU (TR-SBOUU)

The TR-SBOUU approach applies the trust region logic of deterministic SBO (see Section9.6) to SBOUU. Trust-
region verifications are applicable when surrogates are used at the optimization level, i.e., formulations 2 and 4.
As a result of periodic verifications and surrogate rebuilds, these techniques are more expensive than SBOUU;
however they are more reliable in that they maintain the accuracy of results. Relative to nested OUU (formulation
1), TR-SBOUU tends to be less expensive and less sensitive to initial seed and starting point.

TR-SBOUU examples in the/Dakota/test directory includedakota trsbouu2 tbch.in and
dakota trsbouu4 tbch.in , which solve the textbook OUU problem, and
dakota trsbouu2 cantilever.in anddakota trsbouu4 cantilever.in , which solve the can-
tilever OUU problem (see Section21.9).

Computational results for several example problems are available in [32].

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

10.5. ADVANCED EXAMPLES 149

strategy, \
single_method \

method_pointer = ’OPTIM’

method, \
id_method = ’OPTIM’ \
model_pointer = ’OPTIM_M’ \
npsol_sqp \

convergence_tolerance = 1.e-8

model, \
id_model = ’OPTIM_M’ \
nested \

variables_pointer = ’OPTIM_V’ \
sub_method_pointer = ’UQ’ \
responses_pointer = ’OPTIM_R’ \
primary_response_mapping = 0. 0. 1. 0. 0. 1. 0. 0. 0. \
secondary_response_mapping = 0. 0. 0. 0. 0. 0. 0. 0. 1.

variables, \
id_variables = ’OPTIM_V’ \
continuous_design = 2 \

cdv_initial_point 1.8 1.0 \
cdv_upper_bounds 2.164 4.0 \
cdv_lower_bounds 1.5 0.0 \
cdv_descriptor ’d1’ ’d2’

responses, \
id_responses = ’OPTIM_R’ \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 1 \
nonlinear_inequality_upper_bounds = .1 \
numerical_gradients \

method_source dakota \
interval_type central \
fd_gradient_step_size = 1.e-1 \

no_hessians

method, \
id_method = ’UQ’ \
model_pointer = ’UQ_M’ \
nond_sampling, \

samples = 50 seed = 1 sample_type lhs \
response_levels = 3.6e+11 1.2e+05 3.5e+05 \
complementary distribution

model, \
id_model = ’UQ_M’ \
single \

variables_pointer = ’UQ_V’ \
interface_pointer = ’UQ_I’ \
responses_pointer = ’UQ_R’

variables, \
id_variables = ’UQ_V’ \
continuous_design = 2 \

cdv_descriptor ’d1’ ’d2’ \
normal_uncertain = 2 \

nuv_means = 248.89, 593.33 \
nuv_std_deviations = 12.4, 29.7 \
nuv_descriptor = ’nuv1’ ’nuv2’ \

uniform_uncertain = 2 \
uuv_lower_bounds = 199.3, 474.63 \
uuv_upper_bounds = 298.5, 712. \
uuv_descriptor = ’uuv1’ ’uuv2’ \

weibull_uncertain = 2 \
wuv_alphas = 12., 30. \
wuv_betas = 250., 590. \
wuv_descriptor = ’wuv1’ ’wuv2’

interface, \
id_interface = ’UQ_I’ \
system asynch evaluation_concurrency = 5 \

analysis_driver= ’text_book_ouu’

responses, \
id_responses = ’UQ_R’ \
num_response_functions = 3 \
no_gradients \
no_hessians

Figure 10.5: DAKOTA input file for the nested OUU example.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

150 CHAPTER 10. MODELS

Figure 10.6: Formulations 2, 3, and 4 for Surrogate-based OUU.

Bi-level RBDO

The simplest and most direct RBDO approach is the bi-level approach in which a full reliability analysis is
performed for every optimization function evaluation. This involves a nesting of two distinct levels of optimization
within each other, one at the design level and one at the MPP search level.

Since an RBDO problem will typically specify both thēz level and thēp/β̄ level, one can use either the RIA
or the PMA formulation for the UQ portion and then constrain the result in the design optimization portion. In
particular, RIA reliability analysis maps̄z to p/β, so RIA RBDO constrainsp/β:

minimize f

subject to β ≥ β̄

or p ≤ p̄ (10.23)

And PMA reliability analysis maps̄p/β̄ to z, so PMA RBDO constrainsz:

minimize f

subject to z ≥ z̄ (10.24)

wherez ≥ z̄ is used as the RBDO constraint for a cumulative failure probability (failure defined asz ≤ z̄)
but z ≤ z̄ would be used as the RBDO constraint for a complementary cumulative failure probability (failure
defined asz ≥ z̄). It is worth noting that DAKOTA is not limited to these types of inequality-constrained RBDO
formulations; rather, they are convenient examples. DAKOTA supports general optimization under uncertainty
mappings [32] which allow flexible use of statistics within multiple objectives, inequality constraints, and equality
constraints.

In /Dakota/test , thedakota rbdo cantilever.in , dakota rbdo short column.in , anddakota rbdo steel column mapvars.in
input files solve the cantilever (see Section21.9), short column (see Section21.8), and steel column (see Sec-
tion 21.10) OUU problems using a bi-level RBDO approach employing numerical design gradients.

An important performance enhancement for bi-level methods is the use of sensitivity analysis to analytically
compute the design gradients of probability, reliability, and response levels. When design variables are separate

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

10.5. ADVANCED EXAMPLES 151

from the uncertain variables (i.e., they are not distribution parameters), then the following first-order expressions
may be used [59, 64, 2]:

∇dz = ∇dg (10.25)

∇dβcdf =
1

‖ ∇uG ‖
∇dg (10.26)

∇dpcdf = −φ(−βcdf)∇dβcdf (10.27)

where it is evident from Eqs.6.12-6.13 that∇dβccdf = −∇dβcdf and∇dpccdf = −∇dpcdf . In the case of
second-order integrations, Eq.10.27must be expanded to include the curvature correction. For Breitung’s correc-
tion (Eq.6.38),

∇dpcdf =

Φ(−βp)
n−1∑
i=1

 −κi
2(1 + βpκi)

3
2

n−1∏
j=1
j 6=i

1√
1 + βpκj

− φ(−βp)
n−1∏
i=1

1√
1 + βpκi

∇dβcdf (10.28)

where∇dκi has been neglected andβp ≥ 0 (see Section6.3.2). Other approaches assume the curvature correction
is nearly independent of the design variables [82], which is equivalent to neglecting the first term in Eq.10.28.

To capture second-order probability estimates within an RIA RBDO formulation using well-behavedβ con-
straints, a generalized reliability index can be introduced where, similar to Eq.6.10,

β∗cdf = −Φ−1(pcdf) (10.29)

for second-orderpcdf . This reliability index is no longer equivalent to the magnitude ofu, but rather is a con-
venience metric for capturing the effect of more accurate probability estimates. The corresponding generalized
reliability index sensitivity, similar to Eq.10.27, is

∇dβ
∗
cdf = − 1

φ(−β∗cdf)
∇dpcdf (10.30)

where∇dpcdf is defined from Eq.10.28. Even when∇dg is estimated numerically, Eqs.10.25-10.30can be used
to avoid numerical differencing across full reliability analyses.

When the design variables are distribution parameters of the uncertain variables,∇dg is expanded with the chain
rule and Eqs.10.25and10.26become

∇dz = ∇dx∇xg (10.31)

∇dβcdf =
1

‖ ∇uG ‖
∇dx∇xg (10.32)

where the design Jacobian of the transformation (∇dx) may be obtained analytically for uncorrelatedx or semi-
analytically for correlatedx (∇dL is evaluated numerically) by differentiating Eqs.6.14and6.15with respect
to the distribution parameters. Eqs.10.27-10.30remain the same as before. For this design variable case, all
required information for the sensitivities is available from the MPP search.

Since Eqs.10.25-10.32are derived using the Karush-Kuhn-Tucker optimality conditions for a converged MPP,
they are appropriate for RBDO using AMV+, AMV2+, TANA, FORM, and SORM, but not for RBDO using
MVFOSM, MVSOSM, AMV, or AMV2.

In /Dakota/test , thedakota rbdo cantilever analytic.in and
dakota rbdo short column analytic.in input files solve the cantilever and short column OUU prob-
lems using a bi-level RBDO approach with analytic design gradients and first-order limit state approximations.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

152 CHAPTER 10. MODELS

Thedakota rbdo cantilever analytic2.in ,
dakota rbdo short column analytic2.in , anddakota rbdo steel column analytic2.in in-
put files also employ analytic design gradients, but are extended to employ second-order limit state approximations
and integrations.

Sequential/Surrogate-based RBDO

An alternative RBDO approach is the sequential approach, in which additional efficiency is sought through break-
ing the nested relationship of the MPP and design searches. The general concept is to iterate between optimization
and uncertainty quantification, updating the optimization goals based on the most recent probabilistic assessment
results. This update may be based on safety factors [105] or other approximations [23].

A particularly effective approach for updating the optimization goals is to use thep/β/z sensitivity analysis of
Eqs.10.25-10.32in combination with local surrogate models [111]. In [27] and [28], first-order and second-order
Taylor series approximations were employed within a trust-region model management framework [50] in order
to adaptively manage the extent of the approximations and ensure convergence of the RBDO process. Surrogate
models were used for both the objective function and the constraints, although the use of constraint surrogates
alone is sufficient to remove the nesting.

In particular, RIA trust-region surrogate-based RBDO employs surrogate models off andp/β within a trust
region∆k centered atdc. For first-order surrogates:

minimize f(dc) +∇df(dc)T (d− dc)
subject to β(dc) +∇dβ(dc)T (d− dc) ≥ β̄

or p(dc) +∇dp(dc)T (d− dc) ≤ p̄

‖ d− dc ‖∞ ≤ ∆k (10.33)

and for second-order surrogates:

minimize f(dc) +∇df(dc)T (d− dc) + 1
2 (d− dc)T∇2

df(dc)(d− dc)
subject to β(dc) +∇dβ(dc)T (d− dc) + 1

2 (d− dc)T∇2
dβ(dc)(d− dc) ≥ β̄

or p(dc) +∇dp(dc)T (d− dc) + 1
2 (d− dc)T∇2

dp(dc)(d− dc) ≤ p̄

‖ d− dc ‖∞ ≤ ∆k (10.34)

For PMA trust-region surrogate-based RBDO, surrogate models off andz are employed within a trust region∆k

centered atdc. For first-order surrogates:

minimize f(dc) +∇df(dc)T (d− dc)
subject to z(dc) +∇dz(dc)T (d− dc) ≥ z̄

‖ d− dc ‖∞ ≤ ∆k (10.35)

and for second-order surrogates:

minimize f(dc) +∇df(dc)T (d− dc) + 1
2 (d− dc)T∇2

df(dc)(d− dc)
subject to z(dc) +∇dz(dc)T (d− dc) + 1

2 (d− dc)T∇2
dz(dc)(d− dc) ≥ z̄

‖ d− dc ‖∞ ≤ ∆k (10.36)

where the sense of thez constraint may vary as described previously. The second-order information in Eqs.10.34
and10.36will typically be approximated with quasi-Newton updates.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

10.5. ADVANCED EXAMPLES 153

In /Dakota/test , thedakota rbdo cantilever trsb.in and
dakota rbdo short column trsb.in input files solve the cantilever and short column OUU problems
using a first-order sequential RBDO approach with analytic design gradients and first-order limit state approx-
imations. Thedakota rbdo cantilever trsb2.in , dakota rbdo short column trsb2.in , and
dakota rbdo steel column trsb2.in input files utilize second-order sequential RBDO approaches that
employ second-order limit state approximations and integrations (from analytic limit state Hessians with respect
to the uncertain variables) and quasi-Newton approximations to the reliability metric Hessians with respect to
design variables.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

154 CHAPTER 10. MODELS

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 11

Variables

11.1 Overview

Thevariables specification in a DAKOTA input file specifies the parameter set to be iterated by a particular
method. In the case of an optimization study, these variables are adjusted in order to locate an optimal design;
in the case of parameter studies/sensitivity analysis/design of experiments, these parameters are perturbed to
explore the parameter space; and in the case of uncertainty analysis, the variables are associated with probabilistic
characterizations which are used to quantify the uncertainty in response functions. To accommodate these and
other types of studies, DAKOTA supports design, uncertain, and state variable types for continuous and discrete
variable domains.

This chapter will present a brief overview of the types of variables and their uses, as well as cover some user
issues relating to integer/discrete conversions, file formats, and the active set vector. For a detailed description
of variables section syntax and example specifications, refer to the Variables Commands chapter in the DAKOTA
Reference Manual [29].

11.2 Design Variables

Design variables are those variables which are modified for the purposes of computing an optimal design. These
variables may be continuous (real-valued) or discrete (integer-valued).

11.2.1 Continuous Design Variables

The most common type of design variables encountered in engineering applications are of the continuous type.
These variables may assume any real value (e.g.,12.34 , -1.735e+07) within their bounds. All but a handful
of the optimization algorithms in DAKOTA support continuous design variables exclusively.

11.2.2 Discrete Design Variables

Engineering design problems may contain discrete variables such as material types, feature counts, stock gauge
selections, etc. These variables may assume only a fixed number of values within their bounds. While the general

156 CHAPTER 11. VARIABLES

discrete variable case would allow this fixed set of values to include real numbers (e.g.,x1 can only assume the
values4.2 , 6.4 , and8.5), DAKOTA assumes that the discrete variables can be specified as a sequence of
integers (e.g.,x1 can be1, 2, or 3) and that a mapping from the integer sequence to the discrete values can be
applied if necessary within the user’s interface. A common mapping is to use the integer value from DAKOTA as
the index into a vector of discrete real values.

Discrete variables may be classified as either “noncategorical” or “categorical” discrete variables. In the former
noncategorical case, the integrality condition can be relaxed during the solution process since the model can still
compute meaningful response functions for non-integer values. For example, a discrete variable representing the
thickness of a structure is generally a noncategorical variable since it can assume a continuous range of values
during the algorithm iterations, even if it is desired to have a stock gauge thickness in the end. In the latter
categorical case, the integrality cannot be relaxed since the model cannot obtain a solution for a non-integer value.
For example, feature counts are generally categorical variables, since most computational models will not support
a non-integer value for the number of instances of some feature (e.g., number of support brackets).

Gradient-based optimization methods cannot be directly applied to problems with discrete variables. For problems
with noncategorical variables, branch and bound techniques can be used to relax the integrality conditions and
apply gradient-based methods to a series of generated subproblems. For problems with categorical variables,
nongradient-based methods (e.g.,coliny ea) are commonly used. Branch and bound techniques are discussed
in Section9.5and nongradient-based methods are further described in Chapter7.

In addition to engineering applications, many non-engineering applications in the fields of scheduling, logistics,
and resource allocation contain discrete design parameters. Within the Department of Energy, solution techniques
for these problems impact programs in stockpile evaluation and management, production planning, nonprolifer-
ation, transportation (routing, packing, logistics), infrastructure analysis and design, energy production, environ-
mental remediation, and tools for massively parallel computing such as domain decomposition and meshing.

11.3 Uncertain Variables

Deterministic variables (i.e., those with a single known value) do not capture the behavior of the input variables in
all situations. In many cases, the exact value of a model parameter is not precisely known. An example of such an
input variable is the thickness of a heat treatment coating on a structural steel I-beam used in building construction.
Due to variabilities and tolerances in the coating process, the thickness of the layer is known to follow a normal
distribution with a certain mean and standard deviation as determined from experimental data. The inclusion of
the uncertainty in the coating thickness is essential to accurately represent the resulting uncertainty in the response
of the building.

Currently, uncertain variables in DAKOTA are modeled as continuous random variables, or in the case of his-
togram, with an empirical histogram representation. If a problem contains discrete random variables, then these
variables can be modeled using the point-based histogram representation. The following types of uncertain vari-
ables are available:

• Normal: a probability distribution characterized by a mean and standard deviation. Also referred to as
Gaussian. Bounded normal is also supported by some methods with an additional specification of lower
and upper bounds.

• Lognormal: a probability distribution characterized by a mean and either a standard deviation or an error
factor. The natural logarithm of a lognormal variable has a normal distribution. Bounded lognormal is also
supported by some methods with an additional specification of lower and upper bounds.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

11.4. STATE VARIABLES 157

• Uniform: a probability distribution characterized by a lower bound and an upper bound. Probability is
constant between the bounds.

• Loguniform: a probability distribution characterized by a lower bound and an upper bound. The natural
logarithm of a loguniform variable has a uniform distribution.

• Triangular: a probability distribution characterized by a mode, a lower bound, and an upper bound.

• Beta: a flexible probability distribution characterized by a lower bound and an upper bound and alpha and
beta parameters.

• Gamma: a flexible probability distribution characterized by alpha and beta parameters. The exponential
distribution is a special case.

• Gumbel: the Type I Largest Extreme Value probability distribution. Characterized by alpha and beta pa-
rameters.

• Frechet: the Type II Largest Extreme Value probability distribution. Characterized by alpha and beta pa-
rameters.

• Weibull: the Type III Smallest Extreme Value probability distribution. Characterized by alpha and beta
parameters.

• Histogram: an empirically-based probability distribution characterized by a set of(x, y) pairs that either
map out histogram bins (a continuous interval with associated bin count) or histogram points (a discrete
point value with associated count).

• Interval: an interval-based specification characterized by sets of lower and upper bounds and Basic Prob-
ability Assignments (BPAs) associated with each interval. This is not a probability distribution, as the
exact structure of the probabilities within each interval is not known. It is commonly used with epistemic
uncertainty methods.

DAKOTA also supports a user-supplied correlation matrix to provide correlations among the uncertain input
variables. By default, the correlation matrix is set to the identity matrix, i.e., no correlation among the uncertain
variables.

For additional information on random variable probability distributions, refer to [56] and [95]. Refer to the
DAKOTA Reference Manual [29] for more detail on the uncertain variable specifications and to Chapter6 for a
description of methods available to quantify the uncertainty in the response.

11.4 State Variables

State variables consist of “other” variables which are to be mapped through the simulation interface, in that they
are not to be used for design and they are not modeled as being uncertain. State variables provide a conve-
nient mechanism for parameterizing additional model inputs which, in the case of a numerical simulator, might
include solver convergence tolerances, time step controls, or mesh fidelity parameters. For additional model pa-
rameterizations involving strings (e.g., “mesh1.exo”), refer to the analysis components specification described in
SectionSimilar to the design variables discussed in Section11.2, state variables can be continuous (real-valued)
or discrete (integer-valued). For discrete variables which are not a sequence of integers, a mapping can be applied
between the integer and discrete values in the user’s interface.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

158 CHAPTER 11. VARIABLES

State variables, as with other types of variables, are viewed differently depending on the method in use. Since
these variables are neither design nor uncertain variables, algorithms for optimization, least squares, and uncer-
tainty quantification do not iterate on these variables; i.e., they are not active and are hidden from the algorithm.
However, DAKOTA still maps these variables through the user’s interface where they affect the computational
model in use. This allows optimization, least squares, and uncertainty quantification studies to be executed under
different simulation conditions (which will result, in general, in different results). Parameter studies and design of
experiments methods, on the other hand, are general-purpose iterative techniques which do not draw a distinction
between variable types. They include state variables in the set of variables to be iterated, which allows these
studies to explore the effect of state variable values on the response data of interest.

In the future, state variables might be used in direct coordination with an optimization, least squares, or uncertainty
quantification algorithm. For example, state variables could be used to enact model adaptivity through the use of
a coarse mesh or loose solver tolerances in the initial stages of an optimization with continuous model refinement
as the algorithm nears the optimal solution.

11.5 Mixed Variables

The iterative method selected for use in DAKOTA determines what subset, or view, of the variables data is
active in the iteration. The general case of having a mixture of various different types of variables is supported
within all of the DAKOTA methods even though certain methods will only modify certain types of variables (e.g.,
optimizers and least squares methods only modify design variables, and uncertainty quantification methods only
utilize uncertain variables). This implies that variables which are not under the direct control of a particular iterator
will be mapped through the interface in an unmodified state. This allows for a variety of parameterizations within
the model in addition to those which are being used by a particular iterator, which can provide the convenience
of consolidating the control over various modeling parameters in a single file (the DAKOTA input file). An
important related point is that the variable set that is active with a particular iterator is the same variable set for
which derivatives are typically computed (see Section13.3).

11.6 DAKOTA Parameters File Data Format

Simulation interfaces which employ system calls and forks to create separate simulation processes must commu-
nicate with the simulation code through the file system. This is accomplished through the reading and writing of
parameters and results files. DAKOTA uses a particular format for this data input/output. Depending on the user’s
interface specification, DAKOTA will write the parameters file in either standard or APREPRO format (future
XML formats are planned). The former option uses a simple “value tag ” format, whereas the latter option
uses a “{ tag = value }” format for compatibility with the APREPRO utility [92] (as well as DPrePro,
BPREPRO, and JPrePost variants).

11.6.1 Parameters file format (standard)

Prior to invoking a simulation, DAKOTA creates a parameters file which contains the current parameter values
and a set of function requests. The standard format for this parameters file is shown in Figure11.1.

where “<int> ” denotes an integer value, “<double> ” denotes a double precision value, “<string> ” denotes
a string value, and “... ” indicates omitted lines for brevity. Each of the colored blocks (black for variables,
blue for active set vector, red for derivative variables vector, and green for analysis components) denotes an array

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

11.6. DAKOTA PARAMETERS FILE DATA FORMAT 159

<int> variables
<double> <var_tag_cdv 1>
...
<double> <var_tag_cdv n>
<int> <var_tag_ddv 1>
...
<int> <var_tag_ddv n>
<double> <var_tag_uv 1>
...
<double> <var_tag_uv n>
<double> <var_tag_csv 1>
...
<double> <var_tag_csv n>
<int> <var_tag_dsv 1>
...
<int> <var_tag_dsv n>
<int> functions
<int> ASV_1
...
<int> ASV_m
<int> derivative_variables
<int> DVV_1
...
<int> DVV_p
<int> analysis_components
<string> AC_1
...
<string> AC_q

Figure 11.1: Parameters file data format - standard option.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

160 CHAPTER 11. VARIABLES

which begins with an array length and a descriptive tag. These array lengths are useful for dynamic memory
allocation within a simulator or filter program.

The first array for variables begins with the total number of variables (n) with its identifier string “variables .”
The nextn lines specify the current values and descriptors of all of the variables within the parameter setin
the following order: continuous design, discrete design, uncertain, continuous state, and discrete state variables,
where the uncertain variables break out using the following order: normal uncertain, lognormal uncertain, uniform
uncertain, loguniform uncertain, triangular uncertain, beta uncertain, gamma uncertain, gumbel uncertain, frechet
uncertain, weibull uncertain, histogram uncertain (bin histograms followed by point histograms), and interval
uncertain. This ordering is consistent with the specification order in dakota.input.spec. The lengths of these
vectors add to a total ofn (that is,nnuv+nlnuv+nuuv+nluuv+ntuv+nbuv+ngauv+nguuv+nfuv+nwuv+
nhuv +niuv = nuv andncdv +nddv +nuv +ncsv +ndsv = n). If any of the variable types are not present in the
problem, then its block is omitted entirely from the parameters file. The tags are the variable descriptors specified
in the user’s DAKOTA input file, or if no descriptors have been specified, default descriptors are used.

The second array for the active set vector (ASV) begins with the total number of functions (m) and its identifier
string “functions .” The nextm lines specify the request vector for each of them functions in the response
data set followed by the tags “ASV i .” These integer codes indicate what data is required on the current function
evaluation and are described further in Section11.7.

The third array for the derivative variables vector (DVV) begins with the number of derivative variables (p) and
its identifier string “derivative variables .” The nextp lines specify integer variable identifiers followed
by the tags “DVVi .” These integer identifiers are used to identify the subset of variables that are active for the
calculation of derivatives (gradient vectors and Hessian matrices), and correspond to the list of variables in the
first array (e.g., an identifier of 2 indicates that the second variable in the list is active for derivatives).

The final array for the analysis components (AC) begins with the number of analysis components (q) and its
identifier string “analysis components .” The nextq lines provide additional strings for use in specializing
a simulation interface followed by the tags “AC i .” These strings are specified in a user’s input file for a set of
analysis drivers using theanalysis components specification. The subset of the analysis compo-
nents used for a particular analysis driver is the set passed in a particular parameters file.

Several standard-format parameters file examples are shown in Section12.6.

11.6.2 Parameters file format (APREPRO)

For the APREPRO format option, the same data is present and the same ordering is used as in the standard
format. The only difference is that values are associated with their tags within “{ tag = value }” constructs
as shown in Figure11.2. An APREPRO-format parameters file example is shown in Section12.6.

The use of the APREPRO format option allows direct usage of these parameters files by the APREPRO util-
ity, which is a file pre-processor that can significantly simplify model parameterization. Similar pre-processors
include DPrePro, BPREPRO, and JPrePost.[Note: APREPRO is a Sandia-developed pre-processor that is not
currently distributed with DAKOTA. DPrePro is a Perl script distributed with DAKOTA that performs many of the
same functions as APREPRO, and is optimized for use with DAKOTA parameters files in either format. BPREPRO
and JPrePost are additional Perl and JAVA tools, respectively, in use at other sites.]When a parameters file in
APREPRO format is included within a template file (using an include directive), the APREPRO utility recog-
nizes these constructs as variable definitions which can then be used to populate targets throughout the template
file [92]. DPrePro, conversely, does not require the use of includes since it processes the DAKOTA parameters
file and template simulation file separately to create a simulation input file populated with the variables data.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

11.6. DAKOTA PARAMETERS FILE DATA FORMAT 161

{ DAKOTA_VARS = <int> }
{ <var_tag_cdv 1> = <double> }
...
{ <var_tag_cdv n> = <double> }
{ <var_tag_ddv 1> = <int> }
...
{ <var_tag_ddv n> = <int> }
{ <var_tag_uv 1> = <double> }
...
{ <var_tag_uv n> = <double> }
{ <var_tag_csv 1> = <double> }
...
{ <var_tag_csv n> = <double> }
{ <var_tag_dsv 1> = <int> }
...
{ <var_tag_dsv n> = <int> }
{ DAKOTA_FNS = <int> }
{ ASV_1 = <int> }
...
{ ASV_m = <int> }
{ DAKOTA_DER_VARS = <int> }
{ DVV_1 = <int> }
...
{ DVV_p = <int> }
{ DAKOTA_AN_COMPS = <int>}
{ AC_1 = <int> }
...
{ AC_q = <int> }

Figure 11.2: Parameters file data format - APREPRO option.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

162 CHAPTER 11. VARIABLES

Table 11.1: Active set vector integer codes.

Integer Code Binary representation Meaning
7 111 Get Hessian, gradient, and value
6 110 Get Hessian and gradient
5 101 Get Hessian and value
4 100 Get Hessian
3 011 Get gradient and value
2 010 Get gradient
1 001 Get value
0 000 No data required, function is inactive

11.7 The Active Set Vector

The active set vector contains a set of integer codes, one per response function, which describe the data needed
on a particular execution of an interface. Integer values of 0 through 7 denote a 3-bit binary representation of all
possible combinations of value, gradient, and Hessian requests for a particular function, with the most significant
bit denoting the Hessian, the middle bit denoting the gradient, and the least significant bit denoting the value. The
specific translations are shown in Table11.1.

The active set vector in DAKOTA gets its name from managing the active set, i.e., the set of functions that are
active on a particular function evaluation. However, it also manages the type of data that is needed for functions
that are active, and in that sense, has an extended meaning beyond that typically used in the optimization literature.

11.7.1 Active set vector control

Active set vector control may be turned off to allow the user to simplify the supplied interface by removing
the need to check the content of the active set vector on each evaluation. The Interface Commands chapter in the
DAKOTA Reference Manual [29] provides additional information on this option (deactivate active set vector).
Of course, this option trades some efficiency for simplicity and is most appropriate for those cases in which only
a relatively small penalty occurs when computing and returning more data than may be needed on a particular
function evaluation.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 12

Interfaces

12.1 Overview

The interface specification in a DAKOTA input file specifies how function evaluations will be performed.
The mechanisms currently in place for performing function evaluations involve interfacing with one or more
computational simulation codes, computing algebraic mappings, or a combination of the two.

This chapter will describe algebraic mappings in Section12.2, followed by discussion of a variety of mechanisms
for simulation code invocation in Section12.3. It also provides an overview of simulation interface components,
covers issues relating to file management and presents a number of example data mappings.

For a detailed description of interface specification syntax, refer to the interface commands chapter in the DAKOTA
Reference Manual [29].

12.2 Algebraic Mappings

If desired, one can define algebraic input-output mappings using the AMPL code [41] and save these mappings
in 3 files:stub.nl , stub.col , andstub.row , wherestub is a particular root name describing a particular
problem. These files names can be communicated to DAKOTA using thealgebraic mappings input.

DAKOTA will employ stub.col andstub.row to extract the input and output identifier strings, respectively,
and employs the AMPL solver library [43] to process a directed acyclic graph (DAG) specification instub.nl .

As a simple example (fromDakota/test/ampl/fma), consider simple algebraic mappings based on New-
ton’s lawF = ma. The following file is the AMPL model file showing the variable declarations and output metric
definitions:

var mass;
var a;
var v;
minimize force: mass*a;
minimize energy: 0.5 * mass * vˆ2;
option auxfiles rc; # generate stub.row and stub.col

164 CHAPTER 12. INTERFACES

When processed by an AMPL executable, three files are created (as requested by the auxfiles command). The first
is thefma.nl file containing the expression graphs (which is not particularly human readable):

g3 0 1 0 # problem fma
3 0 2 0 0 # vars, constraints, objectives, ranges, eqns
0 2 # nonlinear constraints, objectives
0 0 # network constraints: nonlinear, linear
0 3 0 # nonlinear vars in constraints, objectives, both
0 0 0 1 # linear network variables; functions; arith, flags
0 0 0 0 0 # discrete variables: binary, integer, nonlinear (b,c,o)
0 4 # nonzeros in Jacobian, gradients
6 4 # max name lengths: constraints, variables
0 0 0 0 0 # common exprs: b,c,o,c1,o1

O0 0
o2
v0
v1
O1 0
o2
o2
n0.5
v0
o5
v2
n2
b
3
3
3
k2
0
0
G0 2
0 0
1 0
G1 2
0 0
2 0

Next, thefma.col file contains the set of variable descriptor strings:

mass
a
v

and thefma.row file contains the set of response descriptor strings:

force
energy

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

12.2. ALGEBRAIC MAPPINGS 165

The variable and objective function names declared within AMPL should be a subset of the variable descrip-
tors and response descriptors used by DAKOTA (see the DAKOTA Reference Manual [29] for information
on DAKOTA variable and response descriptors). Ordering of the inputs and outputs within the AMPL dec-
laration is not important, as DAKOTA will reorder data as needed. The following listing shows an excerpt
from Dakota/test/dakota ampl.in , which demonstrates a combined algebraic/simulation-based map-
ping in which algebraic mappings from thefma definition are overlaid with simulation-based mappings from
text book :

variables, \
continuous_design = 5 \

cdv_descriptor ’x1’ ’mass’ ’a’ ’x4’ ’v’ \
cdv_initial_point 0.0 2.0 1.0 0.0 3.0 \
cdv_lower_bounds -3.0 0.0 -5.0 -3.0 -5.0 \
cdv_upper_bounds 3.0 10.0 5.0 3.0 5.0

interface, \
algebraic_mappings = ’ampl/fma.nl’ \
system \

analysis_driver = ’text_book’ \
parameters_file = ’tb.in’ \
results_file = ’tb.out’ \
file_tag

responses, \
response_descriptors = ’force’ ’ineq1’ ’energy’ \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 1 \
num_nonlinear_equality_constraints = 1 \
nonlinear_equality_targets = 20.0 \
analytic_gradients \
no_hessians

Note that the algebraic inputs and outputs are a subset of the total inputs and outputs and that DAKOTA will track
the algebraic contributions to the total response set using the order of the descriptor strings. In the case where
both the algebraic and simulation-based components contribute to the same function, they are overlaid using a
simple summation.

To solvetext book algebraically (refer to Section2.2 for definition), the following AMPL model file could be
used

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

166 CHAPTER 12. INTERFACES

Problem : Textbook problem used in DAKOTA testing
Constrained quartic, 2 continuous variables
Solution: x=(0.5, 0.5), obj = .125, c1 = 0, c2 = 0
#

continuous variables
var x1 >= 0.5 <= 5.8 := 0.9;
var x2 >= -2.9 <= 2.9 := 1.1;

objective function
minimize obj: (x1 - 1)ˆ4 + (x2 - 1)ˆ4;

constraints (current required syntax for DAKOTA/AMPL interface)
minimize c1: x1ˆ2 - 0.5*x2;
minimize c2: x2ˆ2 - 0.5*x1;

required for output of *.row and *.col files
option nl_comments 2, auxfiles rc;

Note that the nonlinear constraints should not currently be declared as constraints within AMPL. Since the
DAKOTA variable bounds and constraint bounds/targets currently take precedence over any AMPL specifica-
tion, the current approach is to declare all AMPL outputs as objective functions and then map them into the
appropriate response function type (objectives, least squares terms, nonlinear inequality/equality constraints, or
generic response functions) within the DAKOTA input specification.

12.3 Simulation Interfaces

The invocation of a simulation code is performed using either system calls, forks, or direct function invocations.
In the system call and fork cases, a separate process is created for the simulation and communication between
DAKOTA and the simulation occurs through parameter and response files. For system call and fork interfaces,
then, the interface section must also specify the details of this data transfer. In the direct function case, a separate
process is not created and communication occurs directly through the function parameter list. Section12.3.1
through Section12.3.4provide information on the simulation interfacing approaches.

12.3.1 The Direct Function Simulation Interface

The direct function interface capability may be used to invoke simulations which are linked into the DAKOTA
executable. This interface eliminates overhead from process creation and file I/O and can simplify operations on
massively parallel computers. These advantages are balanced with the practicality of converting an existing sim-
ulation code into a link library with a subroutine interface. Sandia codes for structural dynamics (Salinas), com-
putational fluid dynamics (Sage), and circuit simulation (Xyce) and external codes such as Phoenix Integration’s
ModelCenter framework have been linked in this way, and a direct interface to Sandia’s SIERRA multiphysics
framework is under development. In the latter case, the additional effort is particularly justified since SIERRA
unifies an entire suite of physics codes. [Note: the “sandwich implementation” of combining a direct interface
plug-in with DAKOTA’s library mode is discussed in the DAKOTA Developers Manual [30]].

In addition to direct linking with simulation codes, the direct interface also provides access to internal polyno-
mial test functions that are used for algorithm performance and regression testing. The following test functions

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

12.3. SIMULATION INTERFACES 167

are available:cantilever , cyl head , log ratio , rosenbrock , short column , andtext book (in-
cluding text book1 , text book2 , text book3 , and text book ouu). While these functions are also
available as external programs in the/Dakota/test directory, maintaining internally linked versions allows
more rapid testing. See Chapter21for additional information on several of these test problems. An example input
specification for a direct interface follows:

interface, \
direct \

analysis_driver = ’rosenbrock’

Additional specification examples are provided in Section2.4, additional information on asynchronous usage of
the direct function interface is provided in Section17.2.1, and the details of adding a simulation code to the direct
interface are provided in Section16.2.

12.3.2 The System Call Simulation Interface

The system call approach invokes a simulation code or simulation driver by using thesystem function from
the standard C library [65]. In this approach, the system call creates a new process which communicates with
DAKOTA through parameter and response files. The system call approach allows the simulation to be initiated
via its standard invocation procedure (as a “black box”) and then coordinated with any variety of tools for pre- and
post-processing. This approach has been widely used in previous studies [34, 36, 26]. The system call approach
involves more process creation and file I/O overhead than the direct function approach; however, this is most
often of very little significance relative to the expense of the simulations. An example of a system call interface
specification follows:

interface, \
system \

analysis_driver = ’text_book’ \
parameters_file = ’text_book.in’ \
results_file = ’text_book.out’ \
file_tag file_save

More detailed examples of using the system call interface are provided in Section2.4.10and in Section16.1, and
information on asynchronous usage of the system call interface is provided in Section17.2.1.

12.3.3 The Fork Simulation Interface

The fork simulation interface uses thefork , exec , andwait families of functions to manage simulation codes
or simulation drivers. Calls tofork or vfork create a copy of the DAKOTA process,execvp replaces this
copy with the simulation code or driver process, and then DAKOTA uses thewait or waitpid functions to wait
for completion of the new process. Transfer of variables and response data between DAKOTA and the simulator
code or driver occurs through the file system in exactly the same manner as for the system call interface. An
example of a fork interface specification follows:

interface, \
fork \

input_filter = ’test_3pc_if’ \
output_filter = ’test_3pc_of’ \
analysis_driver = ’test_3pc_ac’ \
parameters_file = ’tb.in’ \

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

168 CHAPTER 12. INTERFACES

results_file = ’tb.out’ \
file_tag

Information on asynchronous usage of the fork interface is provided in Section17.2.1.

12.3.4 Fork or System Call: Which to Use?

The primary operational difference between the fork and system call simulation interfaces is that, in the fork in-
terface, thefork /exec functions return a UNIX process identifier which can be utilized by thewait /waitpid
functions to detect the completion of a simulation for either synchronous or asynchronous operations. The system
call simulation interface, on the other hand, must use a response file detection scheme for this purpose in the asyn-
chronous case. Thus, an important advantage of the fork interface over the system call interface is that it avoids
the potential of a file race condition when employing asynchronous local parallelism (refer to Section17.2.1).
This condition can occur when the responses file has been created but the writing of the response data set to this
file has not been completed (see Section17.2.1). While significant care has been taken to manage this file race
condition in the system call case, the fork interface still has the potential to be more robust when performing
function evaluations asynchronously.

Another advantage of the fork interface is that it has additional asynchronous capabilities when a function eval-
uation involves multiple analyses. As shown in Table17.1, the fork interface supports asynchronous local and
hybrid parallelism modes for managing concurrent analyses within function evaluations, whereas the system call
interface does not. These additional capabilities again stem from the ability to track child processes by their UNIX
process identifiers.

The only observed disadvantage to the fork interface in comparison to the system interface is that thefork /exec /wait
functions are not part of the standard C library, whereas thesystem function is. As a result, support for imple-
mentations of thefork /exec /wait functions can vary from platform to platform. At one time, these commands
were not available on some of Sandia’s massively parallel computers. However, in the more mainstream UNIX
environments, availability offork /exec /wait should not be an issue.

In summary, the system call interface has been a workhorse for many years and is well tested and proven. How-
ever, the fork interface supports additional capabilities and is recommended when managing asynchronous sim-
ulation code executions. Having both interfaces available has proven to be useful on a number of occasions and
they will both continue to be supported for the foreseeable future.

12.4 Simulation Interface Components

Figure12.1is an extension of Figure1.1which adds the detail of the components that make up each of the sim-
ulation interfaces (system call, fork, and direct). These components include aninput filter (“IFilter”), one
or moreanalysis drivers (“Analysis Code/Driver”), and anoutput filter (“OFilter”). The input and
output filters provide optional facilities for managing simulation pre- and post-processing, respectively. More
specifically, the input filter can be used to insert the DAKOTA parameters into the input files required by the sim-
ulator program, and the output filter can be used to recover the raw data from the simulation results and compute
the desired response data set. If there is a single analysis code, it is often convenient to combine these pre- and
post-processing functions into a single simulation driver script, and the separate input and output filter facilities
are rarely used in this case. If there are multiple analysis drivers, however, the input and output filter facilities
provide a convenient means for managingnonrepeatedportions of the pre- and post-processing for multiple anal-
yses. That is, pre- and post-processing tasks that must be performed for each analysis can be performed within

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

12.4. SIMULATION INTERFACE COMPONENTS 169

Figure 12.1: Components of the simulation interface

the individual analysis drivers, and shared pre- and post-processing tasks that are only performed once for the set
of analyses can be performed within the input and output filters.

When spawning function evaluations using system calls or forks, DAKOTA must communicate parameter and
response data with the analysis drivers and filters through use of the file system. This is accomplished by passing
the names of the parameters and results files on the command line when executing an analysis driver or filter. The
input filter or analysis driver read data from the parameters file and the output filter or analysis driver write the
appropriate data to the responses file. While not essential when the file names are fixed, the file names must be
retrieved from the command line when DAKOTA is changing the file names from one function evaluation to the
next (i.e., using UNIX temporary files or root names tagged with numerical identifiers). In the case of a UNIX C-
shell script, the two command line arguments are retrieved using$argv[1] and$argv[2] (see [3]). Similarly,
Bourne shell scripts retrieve the two command line arguments using$1 and$2 , and Perl scripts retrieve the two
command line arguments using@ARGV[0]and@ARGV[1]. In the case of a C or C++ program, command line
arguments are retrieved usingargc (argument count) andargv (argument vector) [65], and for Fortran 77, the
iargc function returns the argument count and thegetarg subroutine returns command line arguments.

12.4.1 Single analysis driver without filters

If a singleanalysis driver is selected in the interface specification and filters are not needed (as indicated
by omission of theinput filter andoutput filter specifications), then only one process will appear in
the execution syntax of the simulation interface. An example of this syntax in the system call case is:

(driver params.in results.out)

where “driver ” is the user-specified analysis driver and “params.in ” and “results.out ” are the names
of the parameters and results files, respectively, passed on the command line. In this case, the user need not
retrieve the command line arguments since the same file names will be employed each time.

For the same mapping, the fork simulation interface echoes the following syntax:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

170 CHAPTER 12. INTERFACES

blocking fork: driver params.in results.out

for which only a single blocking fork is needed to perform the evaluation.

Executing the same mapping with the direct simulation interface results in an echo of the following syntax:

Direct function: invoking driver

where this analysis driver must be linked as a function within DAKOTA’s direct interface (see Section16.2). Note
that no files are involved for communication of parameter and response data, since this data is passed directly
through the function parameter lists.

Both the system call and fork interfaces support asynchronous operations. The asynchronous system call execu-
tion syntax involves executing the system call in the background:

(driver params.in.1 results.out.1) &

and the asynchronous fork execution syntax involves use of a nonblocking fork:

nonblocking fork: driver params.in.1 results.out.1

where file tagging (see Section12.5.2) has been user-specified in both cases to prevent conflicts between con-
current analysis drivers. In these cases, the user must retrieve the command line arguments since the file names
change on each evaluation. Execution of the direct interface must currently be performed synchronously since
multithreading is not yet supported (see Section17.2.1).

12.4.2 Single analysis driver with filters

When filters are used, the syntax of the system call that DAKOTA performs is:

(ifilter params.in results.out; driver params.in results.out;
ofilter params.in results.out)

in which the input filter (“ifilter ”), analysis driver (“driver ”), and output filter (“ofilter ”) processes are
combined into a single system call through the use of semi-colons and parentheses (see [3]). All three portions
are passed the names of the parameters and results files on the command line.

For the same mapping, the fork simulation interface echoes the following syntax:

blocking fork: ifilter params.in results.out;
driver params.in results.out; ofilter params.in results.out

where a series of three blocking forks is used to perform the evaluation.

Executing the same mapping with the direct simulation interface results in an echo of the following syntax:

Direct function: invoking { ifilter driver ofilter }

where each of the three components must be linked as a function within DAKOTA’s direct interface. Since
asynchronous operations are not yet supported, execution simply involves invocation of each of the three linked
functions in succession. Again, no files are involved since parameter and response data are passed directly through
the function parameter lists.

Asynchronous executions would appear as follows for the system call interface:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

12.4. SIMULATION INTERFACE COMPONENTS 171

(ifilter params.in.1 results.out.1; driver params.in.1 results.out.1;
ofilter params.in.1 results.out.1) &

and, for the fork interface, as:

nonblocking fork: ifilter params.in.1 results.out.1;
driver params.in.1 results.out.1; ofilter params.in.1 results.out.1

where file tagging of evaluations has again been user-specified in both cases. For the system call simulation
interface, use of parentheses and semi-colons to bind the three processes into a single system call simplifies
asynchronous process management compared to an approach using separate system calls. The fork simulation
interface, on the other hand, does not rely on parentheses and accomplishes asynchronous operations by first
forking an intermediate process. This intermediate process is then reforked for the execution of the input filter,
analysis driver, and output filter. The intermediate process can be blocking or nonblocking (nonblocking in this
case), and the second level of forks can be blocking or nonblocking (blocking in this case). The fact that forks
can be reforked multiple times using either blocking or nonblocking approaches provides the enhanced flexibility
to support a variety of local parallelism approaches (see Chapter17).

12.4.3 Multiple analysis drivers without filters

If a list of analysis drivers is specified and filters are not needed (as indicated by omission of theinput filter
andoutput filter specifications), then the system call syntax would appear as:

(driver1 params.in results.out.1; driver2 params.in results.out.2;
driver3 params.in results.out.3)

where “driver1 ”, “ driver2 ”, and “driver3 ” are the user-specified analysis drivers and “params.in ”
and “results.out ” are the user-selected names of the parameters and results files. Note that the results files
for the different analysis drivers have been automatically tagged to prevent overwriting. This automatic tagging of
analyses(see Section12.5.4) is a separate operation from user-selected tagging ofevaluations(see Section12.5.2).

For the same mapping, the fork simulation interface echoes the following syntax:

blocking fork: driver1 params.in results.out.1;
driver2 params.in results.out.2; driver3 params.in results.out.3

for which a series of three blocking forks is needed (no reforking of an intermediate process is required).

Executing the same mapping with the direct simulation interface results in an echo of the following syntax:

Direct function: invoking { driver1 driver2 driver3 }

where, again, each of these components must be linked within DAKOTA’s direct interface and no files are involved
for parameter and response data transfer.

Both the system call and fork interfaces support asynchronous function evaluations. The asynchronous system
call execution syntax would be reported as

(driver1 params.in.1 results.out.1.1; driver2 params.in.1 results.out.1.2;
driver3 params.in.1 results.out.1.3) &

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

172 CHAPTER 12. INTERFACES

and the nonblocking fork execution syntax would be reported as

nonblocking fork: driver1 params.in.1 results.out.1.1;
driver2 params.in.1 results.out.1.2; driver3 params.in.1 results.out.1.3

where, in both cases, file tagging of evaluations has been user-specified to prevent conflicts between concurrent
analysis drivers and file tagging of the results files for multiple analyses is automatically used. In the fork interface
case, an intermediate process is forked to allow a non-blocking function evaluation, and this intermediate process
is then reforked for the execution of each of the analysis drivers.

12.4.4 Multiple analysis drivers with filters

Finally, when combining filters with multipleanalysis drivers , the syntax of the system call that DAKOTA
performs is:

(ifilter params.in.1 results.out.1;
driver1 params.in.1 results.out.1.1;
driver2 params.in.1 results.out.1.2;
driver3 params.in.1 results.out.1.3;
ofilter params.in.1 results.out.1)

in which all processes have again been combined into a single system call through the use of semi-colons and
parentheses. Note that the secondary file tagging for the results files is only used for the analysis drivers and
not for the filters. This is consistent with the filters’ defined purpose of managing the non-repeated portions of
analysis pre- and post-processing (e.g., overlay of response results from individual analyses; see Section12.5.4
for additional information).

For the same mapping, the fork simulation interface echoes the following syntax:

blocking fork: ifilter params.in.1 results.out.1;
driver1 params.in.1 results.out.1.1;
driver2 params.in.1 results.out.1.2;
driver3 params.in.1 results.out.1.3;
ofilter params.in.1 results.out.1

for which a series of five blocking forks is used (no reforking of an intermediate process is required).

Executing the same mapping with the direct simulation interface results in an echo of the following syntax:

Direct function: invoking { ifilter driver1 driver2 driver3 ofilter }

where each of these components must be linked as a function within DAKOTA’s direct interface. Since asyn-
chronous operations are not supported, execution simply involves invocation of each of the five linked functions
in succession. Again, no files are involved for parameter and response data transfer since this data is passed
directly through the function parameter lists.

Asynchronous executions would appear as follows for the system call interface:

(ifilter params.in.1 results.out.1;
driver1 params.in.1 results.out.1.1;
driver2 params.in.1 results.out.1.2;
driver3 params.in.1 results.out.1.3;
ofilter params.in.1 results.out.1) &

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

12.5. SIMULATION FILE MANAGEMENT 173

and for the fork interface:

nonblocking fork: ifilter params.in.1 results.out.1;
driver1 params.in.1 results.out.1.1;
driver2 params.in.1 results.out.1.2;
driver3 params.in.1 results.out.1.3;
ofilter params.in.1 results.out.1

where, again, user-selected file tagging of evaluations is combined with automatic file tagging of analyses. In
the fork interface case, an intermediate process is forked to allow a non-blocking function evaluation, and this
intermediate process is then reforked for the execution of the input filter, each of the analysis drivers, and the
output filter.

12.5 Simulation File Management

This section describes some of the file management features that are employed during an execution of DAKOTA
when file transfer of data is used for the communication between DAKOTA and the simulation code (i.e., when the
system call or fork interfaces are used). These features can be used for generating unique filenames when utilizing
DAKOTA’s parallel execution capabilities and for debugging purposes when troubleshooting the interface between
DAKOTA and the simulation code.

12.5.1 File Saving

The file save option in the interface specification allows the user to control whether parameters and results
files are retained or removed from the working directory. DAKOTA’s default behavior is to remove files once their
use is complete in order to reduce clutter. If the method output setting is verbose, a file remove notification will
follow the function evaluation echo, e.g.:

(driver /usr/tmp/aaaa20305 /usr/tmp/baaa20305)
Removing /usr/tmp/aaaa20305 and /usr/tmp/baaa20305

However, by specifyingfile save in the interface specification, these files will not be removed. This latter
behavior is often useful for debugging communication between DAKOTA and simulator programs. An example
of a file save specification is shown in the file tagging example below.

12.5.2 File Tagging for Evaluations

When a user providesparameters file and results file specifications, thefile tag option in the
interface specification allows the user to render the names of these parameters and results files unique by append-
ing the function evaluation number to the root file names. Default behavior is to not tag these files, which has
the advantage of allowing the user to ignore command line argument passing and always read to and write from
the same file names. However, it has the disadvantage that files may be overwritten from one function evaluation
to the next. By specifyingfile tag in the interface specification, the file names become unique through the
appended evaluation number. This uniqueness makes it necessary for the user’s interface to retrieve the names of
these files from the command line. The file tagging feature is most often used when concurrent simulations are
running in a common disk space, since it can prevent conflicts between the simulations. An example specification
of file tag andfile save is shown below:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

174 CHAPTER 12. INTERFACES

interface, \
system \

analysis_driver = ’text_book’ \
parameters_file = ’text_book.in’ \
results_file = ’text_book.out’ \
file_tag file_save

Special case:When a user specifies names for the parameters and results files andfile save is used without
file tag , untagged files are used in the function evaluation but are then moved to tagged files after the function
evaluation is complete in order to prevent overwriting files for which afile save request has been given. If
the output control is set to verbose, then a notification similar to the following will follow the function evaluation
echo:

(driver params.in results.out)
Files with nonunique names will be tagged to enable file_save:
Moving params.in to params.in.1
Moving results.out to results.out.1

12.5.3 UNIX Temporary Files

If parameters file andresults file are not specified by the user, then the default mechanisms for file
communication are UNIX temporary files. For example, a system call to a single analysis driver would appear as:

(driver /usr/tmp/aaaa20305 /usr/tmp/baaa20305)

and a system call to an analysis driver with filter programs would appear as:

(ifilter /usr/tmp/aaaa22490 usr/tmp/baaa22490;
driver /usr/tmp/aaaa22490 usr/tmp/baaa22490;
ofilter /usr/tmp/aaaa22490 /usr/tmp/baaa22490)

These files have unique names as created by thetmpnam utility from the C standard library [65]. This uniqueness
makes it a requirement for the user’s interface to retrieve the names of these files from the command line. File
tagging with evaluation number is unnecessary with UNIX temporary files (since they are already unique); thus,
file tag requests will be ignored. Afile save request will be honored, but it should be used with care since
the temporary file directory could easily become cluttered without the user noticing.

12.5.4 File Tagging for Analysis Drivers

When multiple analysis drivers are involved in performing a function evaluation with either the system call or
fork simulation interface, a secondary file tagging isautomaticallyused in order to distinguish the results files
used for the individual analyses. This applies to both the case of user-specified names for the parameters and
results files and the default UNIX temporary file case. Examples for the former case were shown previously in
Section12.4.3and Section12.4.4. The following examples demonstrate the latter UNIX temporary file case.
Even though Unix temporary files have unique names for a particular function evaluation, a tagging is still needed
to manage the individual contributions of the different analysis drivers to the response results, since the same root
results filename is used for each component. For the system call interface, the syntax would be similar to the
following:

(ifilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ;

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

12.6. PARAMETER TO RESPONSE MAPPINGS 175

driver1 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.1;
driver2 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.2;
driver3 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.3;
ofilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ)

and, for the fork interface, similar to:

blocking fork:
ifilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ;
driver1 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.1;
driver2 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.2;
driver3 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.3;
ofilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ

The tagging of the results files with an analysis identifier is needed since each of the analysis drivers is re-
sponsible for contributing a user-defined subset of the total response results for the evaluation. If an output
filter is not supplied, then DAKOTA will combine these portions through a simple overlaying of the individ-
ual contributions (i.e., summing the results in/var/tmp/baaxkaOKZ.1 , /var/tmp/baaxkaOKZ.2 , and
/var/tmp/baaxkaOKZ.3). If this simple approach is inadequate, then an output filter should be supplied to
perform the combination. This is the reason why the results file for the output filter does not use analysis tagging; it
is responsible for the results combination (i.e., combining/var/tmp/baaxkaOKZ.1 , /var/tmp/baaxkaOKZ.2 ,
and/var/tmp/baaxkaOKZ.3 into /var/tmp/baaxkaOKZ). In this case, DAKOTA will read only the re-
sults file from the output filter (i.e.,/var/tmp/baaxkaOKZ) and interpret it as the total response set for the
evaluation.

Parameters files are not currently tagged with an analysis identifier. This reflects the fact that DAKOTA does not
attempt to subdivide the requests in the active set vector for different analysis portions. Rather, the total active set
vector is passed to each analysis driver and the appropriate subdivision of workmust be defined by the user. This
allows the division of labor to be very flexible. In some cases, this division might occur across response functions,
with different analysis drivers managing the data requests for different response functions. And in other cases, the
subdivision might occur within response functions, with different analysis drivers contributing portions to each of
the response functions. The only restriction is that each of the analysis drivers must follow the response format
dictated by the total active set vector. For response data for which an analysis driver has no contribution, 0’s must
be used as placeholders.

12.6 Parameter to Response Mappings

In this section, interface mapping examples are presented through the discussion of several parameters files and
their corresponding results files. A typical input file for 2 variables (n = 2) and 3 functions (m = 3) using the
standard parameters file format (see Section11.6.1) is as follows:

2 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

3 functions
1 ASV_1
1 ASV_2
1 ASV_3
2 derivative_variables
1 DVV_1

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

176 CHAPTER 12. INTERFACES

2 DVV_2
0 analysis_components

where numerical values are associated with their tags within “value tag ” constructs. The number of design
variables (n) and the string “variables ” are followed by the values of the design variables and their tags, the
number of functions (m) and the string “functions ”, the active set vector (ASV) and its tags, the number of
derivative variables and the string “derivative variables ”, the derivative variables vector (DVV) and its
tags, the number of analysis components and the string “analysis components ”, and the analysis compo-
nents array and its tags. The descriptive tags for the variables are always present and they are either the descriptors
specified in the user’s variables specification or are default descriptors if none were provided. The length of the
active set vector is equal to the number of functions (m). In the case of an optimization data set with an objective
function and two nonlinear constraints (three response functions total), the first ASV value is associated with the
objective function and the remaining two are associated with the constraints (in whatever consistent constraint
order has been defined by the user). The DVV defines a subset of the variables used for computing derivatives.
Its identifiers are 1-based and correspond to the full set of variables listed in the first array. Finally, the analysis
components pass additional strings from the user’sanalysis components specification in a DAKOTA input
file through to the simulator. They allow the development of simulation drivers that are more flexible, by allowing
them to be passed additional specifics at run time, e.g., the names of model files such as a particular mesh to use.

For the APREPRO format option (see Section11.6.2), the same set of data appears as follows:

{ DAKOTA_VARS = 2 }
{ cdv_1 = 1.500000000000000e+00 }
{ cdv_2 = 1.500000000000000e+00 }
{ DAKOTA_FNS = 3 }
{ ASV_1 = 1 }
{ ASV_2 = 1 }
{ ASV_3 = 1 }
{ DAKOTA_DER_VARS = 2 }
{ DVV_1 = 1 }
{ DVV_2 = 2 }
{ DAKOTA_AN_COMPS = 0 }

where the numerical values are associated with their tags within “{ tag = value }” constructs.

The user-supplied simulation interface, comprised of a simulator program or driver and (optionally) filter pro-
grams, is responsible for reading the parameters file and creating a results file that contains the response data
requested in the ASV. This response data is written in the format described in Section13.2. Since the ASV con-
tains all ones in this case, the response file corresponding to the above input file would contain values for the three
functions:

1.250000000000000e-01 f
1.500000000000000e+00 c1
1.500000000000000e+00 c2

Since function tags are optional, the following would be equally acceptable:

1.250000000000000e-01
1.500000000000000e+00
1.500000000000000e+00

For the same parameters with different ASV components,

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

12.6. PARAMETER TO RESPONSE MAPPINGS 177

2 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

3 functions
3 ASV_1
3 ASV_2
3 ASV_3
2 derivative_variables
1 DVV_1
2 DVV_2
0 analysis_components

the following response data is required:

1.250000000000000e-01 f
1.500000000000000e+00 c1
1.500000000000000e+00 c2
[5.000000000000000e-01 5.000000000000000e-01]
[3.000000000000000e+00 -5.000000000000000e-01]
[-5.000000000000000e-01 3.000000000000000e+00]

Here, we need not only the function values, but also each of their gradients. The derivatives are computed with
respect tocdv 1 andcdv 2 as indicated by the DVV values. Another modification to the ASV components
yields the following parameters file,

2 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

3 functions
2 ASV_1
0 ASV_2
2 ASV_3
2 derivative_variables
1 DVV_1
2 DVV_2
0 analysis_components

for which the following results file is needed:

[5.000000000000000e-01 5.000000000000000e-01]
[-5.000000000000000e-01 3.000000000000000e+00]

Here, we need gradients for functionsf andc2 , but not forc1 , presumably since this constraint is inactive.

A full Newton optimizer might make the following request:

2 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

1 functions
7 ASV_1
2 derivative_variables
1 DVV_1
2 DVV_2
0 analysis_components

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

178 CHAPTER 12. INTERFACES

for which the following results file,

1.250000000000000e-01 f
[5.000000000000000e-01 5.000000000000000e-01]
[[3.000000000000000e+00 0.000000000000000e+00

0.000000000000000e+00 3.000000000000000e+00]]

containing the objective function, its gradient vector, and its Hessian matrix, is needed. Again, the derivatives
(gradient vector and Hessian matrix) are computed with respect tocdv 1 andcdv 2 as indicated by the DVV
values.

Lastly, a more advanced example could have multiple types of variables present; in this example, 2 continuous
and 3 discrete design, 2 normal uncertain, and 3 continuous and 2 discrete state variables. When a mixture
of variable types is present, the content of the DVV (and therefore the required length of gradient vectors and
Hessian matrices) depends upon the type of study being performed (see Section13.3). For a reliability analysis
problem, the uncertain variables are the active continuous variables and the following parameters file would be
typical:

12 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

2 ddv_1
2 ddv_2
2 ddv_3

5.000000000000000e+00 nuv_1
5.000000000000000e+00 nuv_2
3.500000000000000e+00 csv_1
3.500000000000000e+00 csv_2
3.500000000000000e+00 csv_3

4 dsv_1
4 dsv_2
3 functions
3 ASV_1
3 ASV_2
3 ASV_3
2 derivative_variables
6 DVV_1
7 DVV_2
2 analysis_components

mesh1.exo AC_1
db1.xml AC_2

Gradients are requested with respect to variable entries 6 and 7, which correspond to normal uncertain variables
nuv 1 andnuv 2. The following response data would be appropriate:

7.943125000000000e+02 f
1.500000000000000e+00 c1
1.500000000000000e+00 c2
[2.560000000000000e+02 2.560000000000000e+02]
[0.000000000000000e+00 0.000000000000000e+00]
[0.000000000000000e+00 0.000000000000000e+00]

In a parameter study, however, no distinction is drawn between different types of continuous variables, and deriva-
tives would be needed with respect to all continuous variables (ndvv = 7 for the continuous design variables

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

12.6. PARAMETER TO RESPONSE MAPPINGS 179

cdv 1 andcdv 2, the normal uncertain variablesnuv 1 andnuv 2, and the continuous state variablescsv 1,
csv 2 andcsv 3). The parameters file would appear as

12 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

2 ddv_1
2 ddv_2
2 ddv_3

5.000000000000000e+00 nuv_1
5.000000000000000e+00 nuv_2
3.500000000000000e+00 csv_1
3.500000000000000e+00 csv_2
3.500000000000000e+00 csv_3

4 dsv_1
4 dsv_2
3 functions
3 ASV_1
3 ASV_2
3 ASV_3
7 derivative_variables
1 DVV_1
2 DVV_2
6 DVV_3
7 DVV_4
8 DVV_5
9 DVV_6

10 DVV_7
2 analysis_components

mesh1.exo AC_1
db1.xml AC_2

and the corresponding results would appear as

7.943125000000000e+02 f
1.500000000000000e+00 c1
1.500000000000000e+00 c2
[5.000000000000000e-01 5.000000000000000e-01 2.560000000000000e+02

2.560000000000000e+02 6.250000000000000e+01 6.250000000000000e+01
6.250000000000000e+01]

[3.000000000000000e+00 -5.000000000000000e-01 0.000000000000000e+00
0.000000000000000e+00 0.000000000000000e+00 0.000000000000000e+00
0.000000000000000e+00]

[-5.000000000000000e-01 3.000000000000000e+00 0.000000000000000e+00
0.000000000000000e+00 0.000000000000000e+00 0.000000000000000e+00
0.000000000000000e+00]

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

180 CHAPTER 12. INTERFACES

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 13

Responses

13.1 Overview

The responses specification in a DAKOTA input file specifies the types of data that can be returned from an
interface during DAKOTA’s execution. The specification includes the number and type of response functions
(objective functions, nonlinear constraints, least squares terms, etc.) as well as availability of first and second
derivatives (gradient vectors and Hessian matrices) for these response functions.

This chapter will present a brief overview of the response data sets and their uses, as well as cover some user
issues relating to file formats and derivative vector and matrix sizing. For a detailed description of responses
section syntax and example specifications, refer to the responses commands chapter in the DAKOTA Reference
Manual [29].

13.1.1 Response function types

The types of response functions specified in the responses specification depend on the iterative technique specified
in the method specification:

• an optimization data set comprised ofnum objective functions ,
num nonlinear inequality constraints , andnum nonlinear equality constraints .
This data set is appropriate for use with optimization methods (e.g., the methods in Section3.5).

• a least squares data set comprised ofnum least squares terms ,
num nonlinear inequality constraints , andnum nonlinear equality constraints .
This data set is appropriate for use with nonlinear least squares algorithms (e.g., the methods in Section3.7).

• a generic data set comprised ofnum response functions . This data set is appropriate for use with
uncertainty quantification methods (e.g., the methods in Section3.4).

Certain general-purpose iterative techniques, such as parameter studies and design of experiments methods, can
be used with any of these data sets.

182 CHAPTER 13. RESPONSES

13.1.2 Gradient availability

Gradient availability for these response functions may be described by:

• no gradients : gradient data is not needed.

• numerical gradients : gradient data is needed and will be computed by finite differences.

• analytic gradients : gradient data is needed and is available directly from the simulation code (finite
differencing is not required).

• mixed gradients : some gradient information is available directly from the simulation whereas the rest
will have to be finite differenced.

The gradient specification also links back to the iterative method being employed. Gradient data is commonly
needed when the iterative study involves gradient-based optimization, reliability analysis for uncertainty quantifi-
cation, or local sensitivity analysis.

13.1.3 Hessian availability

Hessian availability for the response functions is similar to the gradient availability specifications, with the addi-
tion of support for quasi-Hessians:

• no hessians : Hessian data is not needed.

• numerical gradients : Hessian data is needed and will be computed by finite differences. These
finite differences may be involve first-order differences of gradients (if analytic gradients are available for
the response function of interest) or second-order differences of values (in all other cases).

• quasi hessians : Hessian data is needed and will be accumulated using secant updates (BFGS or SR1)
from a series of gradient evaluations.

• analytic hessians : Hessian data is needed and is available directly from the simulation code.

• mixed hessians : Hessian data is needed and will be obtained from a mix of numerical, analytic, and
quasi sources.

The Hessian specification also links back to the iterative method in use, and use of Hessian data would commonly
appear for gradient-based optimization using full Newton methods or for reliability analysis with second-order
limit state approximations or second-order probability integrations.

13.2 DAKOTA Results File Data Format

Simulation interfaces which employ system calls and forks to create separate simulation processes must com-
municate with the simulation through the file system. This is accomplished through the reading and writing of
parameters and results files. DAKOTA uses its own format for this data input/output. For the results file, only
one format is supported (as compared to the two parameters file formats described in Section11.6). Ordering of
response functions is as listed in Section13.1.1(e.g., objective functions or least squares terms are first, followed
by nonlinear inequality constraints, followed by nonlinear equality constraints).

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

13.2. DAKOTA RESULTS FILE DATA FORMAT 183

<double> <fn_tag 1>
<double> <fn_tag 2>
...
<double> <fn_tag m>
[<double> <double> .. <double>]
[<double> <double> .. <double>]
...
[<double> <double> .. <double>]
[[<double> <double> .. <double>]]
[[<double> <double> .. <double>]]
...
[[<double> <double> .. <double>]]

Figure 13.1: Results file data format.

After completion of a simulation, DAKOTA expects to read a file containing response data for the current set of
parameters and corresponding to the current set of function requests in the active set vector. This response data
must be in the following format:

The first block of data (shown in black) is the function values that have been requested, followed by a block
of requested gradient data (shown in blue), followed by a block of requested Hessian data (shown in red). If
the amount of data in the file does not match the function request vector, DAKOTA will abort with a response
recovery format error message.

Function data have no bracket delimiters and one character tag per function can beoptionally supplied. These
tags are not used by DAKOTA and are only included as an optional field for consistency with the parameters
file format and for backwards compatibility. The tags are rendered optional through DAKOTA’s use of regular
expression pattern matching to detect whether an upcoming field is numerical data or a tag. If character tags are
used, then they must be separated from data by either white space or new line characters and there must not be any
white space embedded within a character tag (e.g., use “variable1 ” or “ variable 1,” but not “variable
1”).

Function gradient vectors are delimited with single brackets [. . .ndvv-vector of doubles. . .]. Tags are not used
and must not be present. White space separating the brackets from the data is optional.

Function Hessian matrices are delimited with double brackets [[. . .ndvv × ndvv matrix of doubles. . .]]. Data is
listed by rows and can either be run together or broken onto multiple lines for readability. Tags are not used and
must not be present. White space separating the brackets from the data is optional, although white space must not
appear between the double brackets.

The format of the numeric fields may be floating point or scientific notation. In the latter case, acceptable exponent
characters are “E” or “ e. ” A common problem when dealing with Fortran programs is that a C++ read of
a numeric field using “D” or “ d” as the exponent (i.e., a double precision value from Fortran) may fail or be
truncated. In this case, the “D” exponent characters must be replaced either through modifications to the Fortran
source or compiler flags or through a separate post-processing step (e.g., using the UNIXsed utility).

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

184 CHAPTER 13. RESPONSES

13.3 Active Variables for Derivatives

An important question for proper management of both gradient and Hessian data is: if several different types of
variables are used,for which variables are response function derivatives needed?That is, how isndvv deter-
mined? The short answer is that the derivative variables vector (DVV) specifies the set of variables to be used for
computing derivatives, andndvv is the length of this vector. The long answer is that, in most cases, the DVV is
defined directly from the set of active continuous variables for the iterative method in use.

Since methods determine what subset, or view, of the variables data is active in the iteration, it is this same set
of variables for which derivatives are most commonly computed (see also Section11.5). Derivatives are never
needed with respect to any discrete variables (since these derivatives do not exist) and the active continuous
variables depend on the type of study being performed. For optimization and least squares problems, the active
continuous variables are thecontinuous design variables(ndvv = ncdv) since this is the information used by the
minimizer in computing a search direction. Similarly, for nondeterministic analysis methods which use gradient
and/or Hessian information, the active continuous variables are theuncertain variables(ndvv = nuv). And lastly,
parameter study methods which are cataloguing gradient and/or Hessian information do not draw a distinction
among continuous variables; therefore, the active continuous variables are defined fromall continuous variables
that are specified (ndvv = ncdv + nuv + ncsv).

In a few cases, derivatives are needed with respect to theinactive continuous variables. For example, when
performing reliability analysis within reliability-based design optimization, derivatives of the generic response
function data set may be needed with respect to the design variables, which are inactive continuous variables
within the uncertainty quantification. These instances are the reason for the creation and inclusion of the DVV
guidance for derivative estimation.

In all cases, if the DVV is honored, then the correct derivative components are returned. In simple cases, such
as optimization and least squares studies that only specify design variables and for nondeterministic analyses that
only specify uncertain variables, then derivative component subsets are not an issue and the exact content of the
DVV may be safely ignored.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 14

Inputs to DAKOTA

14.1 Overview of Inputs

The DAKOTA executable supports a number of command line inputs, as described in Section2.1.5. Among these
are specifications for the DAKOTA input file and, optionally, a restart file. The syntax of the DAKOTA input file
is described in detail in the DAKOTA Reference Manual [29], and the restart file is described in Chapter19.

The DAKOTA input file may be prepared manually (e.g., using a text editor such asxemacs or vi), or it may
be defined graphically using the JAGUAR graphical user interface, as described in Section14.2 below. Once
prepared, the DAKOTA input file may identify additional files for data import as described in Section14.3.

14.2 JAGUAR

A short description of the steps for downloading, installing, and executing JAGUAR is provided below. For
DAKOTA 4.0, JAGUAR is in a beta release state, so not all features are fully operational at this time.

• Download the JAGUAR installer. As for the DAKOTA download process described in Section2.1.1, the
JAGUAR distribution is accessed by clicking on the download link available from:

http://www.cs.sandia.gov/DAKOTA/software.html

and filling out the short online registration form.

• Install supporting JAVA software (if needed). If not already installed on your machine, you will need the
“Java 2 Platform, Standard Edition (J2SE)” in version 1.4.2 or newer (note that Sun has recently revised its
1.x.x versioning and the recently released 5.0 is the same as 1.5.0 in the old numbering scheme).

http://java.sun.com/j2se/1.5.0/download.jsp [click on “Download JRE 5.0 ...”]

http://www.java.com/en/ [click on download]

• Run the installer (either double-click the icon or execute “java -jar JaguarInstall-version-date.jar”). Fig-
ure14.1shows a screen capture of the installer.

• Execute the installed GUI(either double-click the new icon or execute “jaguar.sh” in the install directory).
Figure14.2shows the splash screen for the JAGUAR GUI.

http://www.cs.sandia.gov/DAKOTA/software.html
http://java.sun.com/j2se/1.5.0/download.jsp
http://www.java.com/en/

186 CHAPTER 14. INPUTS TO DAKOTA

Figure 14.1: The JAGUAR installer.

Figure 14.2: The initial JAGUAR splash screen.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

14.3. DATA IMPORTS 187

Figure 14.3: JAGUAR navigation.

• Select File→ New. Click the “File” pull-down and select “New.” Observe the navigation aids on the left
of the window, as shown in Figure14.3.

• Visit specifications. At a minimum, select Variables, Interfaces, Responses, and Method on the left naviga-
tion. For each, select a set id (or use the default) and click OK. Select your desired settings for a particular
run. Figures14.4–14.6 show sample selections for Variables, Interfaces, and Responses. Now with the
model components specified, an iterative method is selected, as shown in Figure14.7.

• Perform Analysis. Visit the “Perform Analysis” view on the left navigation and review the input selections
generated by JAGUAR, as shown in Figure14.8. “Run DAKOTA” (within the Perform Analysis view)
and “Problem Visualization” are not yet active, so click the File pull-down, select “Save as...,” and run
DAKOTA separately for now. If the DAKOTA and JAGUAR versions are not synchronized, some minor
editing of this input file may be required.

14.3 Data Imports

The DAKOTA input file may identify additional files used to import data into DAKOTA.

14.3.1 AMPL algebraic mappings: stub.nl, stub.row, and stub.col

As described in Section12.2, an AMPL specification of algebraic input-to-output relationships may be imported
into DAKOTA and used to define or augment the mappings of a particular interface.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

188 CHAPTER 14. INPUTS TO DAKOTA

Figure 14.4: An example of JAGUAR variables inputs.

14.3.2 Genetic algorithm population import

Genetic algorithms (GAs) from the JEGA and COLINY packages support a population import feature using
the keywordsinitialization type flat file = STRING. This is useful for warm starting GAs from
available data or previous runs. Refer to the Method Specification chapter in the DAKOTA Reference Manual [29]
for additional information on this specification.

14.3.3 Surrogate construction from data files

Global data fit surrogates may be constructed from a variety of data sources. One of these sources is an auxilliary
data file, as specified by the keywordsreuse samples samples file = STRING. Refer to the Model
Specification chapter in the DAKOTA Reference Manual [29] for additional information on this specification.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

14.3. DATA IMPORTS 189

Figure 14.5: An example of JAGUAR interface inputs.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

190 CHAPTER 14. INPUTS TO DAKOTA

Figure 14.6: An example of JAGUAR responses inputs.

Figure 14.7: An example of JAGUAR method inputs.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

14.3. DATA IMPORTS 191

Figure 14.8: Review of the input file generated by JAGUAR.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

192 CHAPTER 14. INPUTS TO DAKOTA

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 15

Output from DAKOTA

15.1 Overview of Output Formats

Given an emphasis on complex numerical simulation codes that run on massively parallel supercomputers, DAKOTA’s
output has been designed to provide a succinct, text-based reporting of the progress of the iterations and function
evaluations performed by an algorithm. In addition, DAKOTA provides a tabular output format that is useful for
data visualization with external tools and a basic graphical output capability that is useful as a monitoring tool.
The JAGUAR graphical user interface described in Section14.2is also an emerging capability that will provide
more advanced visualization facilities in time.

15.2 Standard Output

DAKOTA outputs basic information to “standard out” (i.e., the screen) for each function evaluation, consisting
of an evaluation number, parameter values, execution syntax, the active set vector, and the response data set. To
describe the standard output of DAKOTA, optimization of the “container” problem (see Chapter21 for problem
formulation) is used as an example. The input file for this example is shown in Figure15.1. In this example,
there is one equality constraint, and DAKOTA’s finite difference algorithm is used to provide central difference
numerical gradients to the NPSOL optimizer.

194 CHAPTER 15. OUTPUT FROM DAKOTA

strategy, \
single_method \
graphics \
tabular_graphics_data

method, \
npsol_sqp

variables, \
continuous_design = 2 \

cdv_descriptor ’H’ ’D’ \
cdv_initial_point 4.5 4.5 \
cdv_lower_bounds 0.0 0.0

interface, \
system \

analysis_driver = ’container’ \
parameters_file = ’container.in’ \
results_file = ’container.out’ \
file_tag

responses, \
num_objective_functions = 1 \
num_nonlinear_equality_constraints = 1 \
numerical_gradients \

method_source dakota \
interval_type central \
fd_gradient_step_size = 0.001 \

no_hessians

Figure 15.1: DAKOTA input file for the “container” example problem.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

15.2. STANDARD OUTPUT 195

A partial listing of the output for the container optimization example follows:

Running MPI executable in serial mode.
DAKOTA version 4.0 released 05/12/2006.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
methodName = npsol_sqp
gradientType = numerical
Numerical gradients using central differences
to be calculated by the dakota finite difference routine.
hessianType = none

>>>>> Running Single Method Strategy.

>>>>> Running npsol_sqp iterator.

NPSOL --- Version 5.0-2 Sept 1995
==

--
Begin Dakota derivative estimation routine
--

>>>>> Initial map for analytic portion of response:

Begin Function Evaluation 1

Parameters for function evaluation 1:

4.5000000000e+00 H
4.5000000000e+00 D

(container container.in.1 container.out.1)

Active response data for function evaluation 1:
Active set vector = { 1 1 }

1.0713145108e+02 obj_fn
8.0444076396e+00 nln_eq_con_1

>>>>> Dakota finite difference gradient evaluation for x[1] + h:

Begin Function Evaluation 2

Parameters for function evaluation 2:

4.5045000000e+00 H
4.5000000000e+00 D

(container container.in.2 container.out.2)

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

196 CHAPTER 15. OUTPUT FROM DAKOTA

Active response data for function evaluation 2:
Active set vector = { 1 1 }

1.0719761302e+02 obj_fn
8.1159770472e+00 nln_eq_con_1

>>>>> Dakota finite difference gradient evaluation for x[1] - h:

Begin Function Evaluation 3

Parameters for function evaluation 3:

4.4955000000e+00 H
4.5000000000e+00 D

(container container.in.3 container.out.3)

Active response data for function evaluation 3:
Active set vector = { 1 1 }

1.0706528914e+02 obj_fn
7.9728382320e+00 nln_eq_con_1

>>>>> Dakota finite difference gradient evaluation for x[2] + h:

Begin Function Evaluation 4

Parameters for function evaluation 4:

4.5000000000e+00 H
4.5045000000e+00 D

(container container.in.4 container.out.4)

Active response data for function evaluation 4:
Active set vector = { 1 1 }

1.0727959301e+02 obj_fn
8.1876180243e+00 nln_eq_con_1

>>>>> Dakota finite difference gradient evaluation for x[2] - h:

Begin Function Evaluation 5

Parameters for function evaluation 5:

4.5000000000e+00 H
4.4955000000e+00 D

(container container.in.5 container.out.5)

Active response data for function evaluation 5:
Active set vector = { 1 1 }

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

15.2. STANDARD OUTPUT 197

1.0698339109e+02 obj_fn
7.9013403937e+00 nln_eq_con_1

>>>>> Total response returned to iterator:

Active set vector = { 3 3 }
1.0713145108e+02 obj_fn
8.0444076396e+00 nln_eq_con_1

[1.4702653619e+01 3.2911324639e+01] obj_fn gradient
[1.5904312809e+01 3.1808625618e+01] nln_eq_con_1 gradient

Majr Minr Step Fun Merit function Norm gZ Violtn nZ Penalty Conv
0 1 0.0E+00 1 9.90366719E+01 1.6E+00 8.0E+00 1 0.0E+00 F FF

...<snip>...

>>>>> Dakota finite difference gradient evaluation for x[2] - h:

Begin Function Evaluation 40

Parameters for function evaluation 40:

4.9873894231e+00 H
4.0230575428e+00 D

(container container.in.40 container.out.40)

Active response data for function evaluation 40:
Active set vector = { 1 1 }

9.8301287596e+01 obj_fn
-1.2698647501e-01 nln_eq_con_1

>>>>> Total response returned to iterator:

Active set vector = { 3 3 }
9.8432498116e+01 obj_fn

-9.6301439045e-12 nln_eq_con_1
[1.3157517860e+01 3.2590159623e+01] obj_fn gradient
[1.2737124497e+01 3.1548877601e+01] nln_eq_con_1 gradient

7 1 1.0E+00 8 9.84324981E+01 4.6E-11 9.6E-12 1 1.7E+02 T TT

Exit NPSOL - Optimal solution found.

Final nonlinear objective value = 98.43250

NPSOL exits with INFORM code = 0 (see "Interpretation of output" section in NPSOL manual)

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

198 CHAPTER 15. OUTPUT FROM DAKOTA

NOTE: see Fortran device 9 file (fort.9 or ftn09)
for complete NPSOL iteration history.

<<<<< Iterator npsol_sqp completed.
<<<<< Function evaluation summary: 40 total (40 new, 0 duplicate)
<<<<< Best parameters =

4.9873894231e+00 H
4.0270846274e+00 D

<<<<< Best objective function =
9.8432498116e+01

<<<<< Best constraint values =
-9.6301439045e-12

<<<<< Best data captured at function evaluation 36
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:

Total CPU = 0.07 [parent = 0.07, child =1.38778e-17]
Total wall clock = 0.348798

The first block of lines provide a report on the DAKOTA configuration and settings. The lines that follow, down
to the line “Exit NPSOL - Optimal solution found ”, contain information about the function eval-
uations that have been requested by NPSOL and performed by DAKOTA. Evaluations 6 through 39 have been
omitted from the listing for brevity.

Following the line “Begin Function Evaluation 1 ”, the initial values of the design variables, the syntax
of the function evaluation, and the resulting objective and constraint function values are listed. The values of the
design variables are labeled with the tagsH andD, respectively, according to the descriptors to these variables
given in the input file, Figure15.1. The values of the objective function and volume constraint are labeled with
the tagsobj fn andnln eq con 1, respectively. Note that the initial design parameters are infeasible since
the equality constraint is violated (6= 0). However, by the end of the run, the optimizer finds a design that is
both feasible and optimal for this example. Between the design variables and response values, the content of
the system call to the simulator is displayed as “(container container.in.1 container.out.1) ”,
with container being the name of the simulator andcontainer.in.1 andcontainer.out.1 being the
names of the parameters and results files, respectively.

Just preceding the output of the objective and constraint function values is the line “Active set vector =
{1 1}”. The active set vector indicates the types of data that are required from the simulator for the objective and
constraint functions, and values of “1” indicate that the simulator must return values for these functions (gradient
and Hessian data are not required). For more information on the active set vector, see Section11.7.

Since finite difference gradients have been specified, DAKOTA computes their values by making additional func-
tion evaluation requests to the simulator at perturbed parameter values. Examples of the gradient-related func-
tion evaluations have been included in the sample output, beginning with the line that reads “>>>>> Dakota
finite difference evaluation for x[1] + h: ”. The resulting finite difference gradients are listed
after function evaluation 5 beginning with the line “>>>>> Total response returned to iterator: ”.
Here, another active set vector is displayed in the DAKOTA output file. The line “Active set vector =
{ 3 3 }” indicates that the total response resulting from the finite differencing contains function values and
gradients.

The final lines of the DAKOTA output, beginning with the line “<<<<< Iterator npsol sqp completed ”,
summarize the results of the optimization study. The best values of the optimization parameters, objective func-
tion, and volume constraint are presented along with the function evaluation number where they occurred, total
function evaluation counts, and a timing summary. In the end, the objective function has been minimized and the
equality constraint has been satisfied (driven to zero within the constraint tolerance).

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

15.3. TABULAR OUTPUT DATA 199

%eval_id H D obj_fn nln_eq_con_1
1 4.5 4.5 107.1314511 8.04440764
2 5.801246882 3.596476363 94.33737399 -4.59103645
3 5.197920019 3.923577479 97.7797214 -0.6780884711
4 4.932877133 4.044776216 98.28930566 -0.1410680284
5 4.989328733 4.026133158 98.4270019 -0.005324671422
6 4.987494493 4.027041977 98.43249058 -7.307058462e-06
7 4.987391669 4.02708372 98.43249809 -2.032539782e-08
8 4.987389423 4.027084627 98.43249812 -9.630143905e-12

Figure 15.2: DAKOTA’s tabular output file showing the iteration history of the “container” optimization problem.

The DAKOTA results are intermixed with iteration information from the NPSOL library. The lines with the
heading “Majr Minr Step Fun Merit function Norm gZ Violtn nZ Penalty Conv ” come
from Fortran write statements within NPSOL. The output is mixed since both DAKOTA and NPSOL are writing
to the same standard output stream. The relative locations of these output contributions can vary depending on the
specifics of output buffering and flushing on a particular platform and depending on whether or not the standard
output is being redirected to a file. In some cases, output from the optimization library may appear on each
iteration (as in this example), and in other cases, it may appear at the end of the DAKOTA output. Finally, a more
detailed summary of the NPSOL iterations is written to the Fortran device 9 file (e.g.,fort.9 or ftn09).

15.3 Tabular Output Data

DAKOTA has the capability to print the iteration history in tabular form to a file. The keyword
tabular graphics data needs to be included in the strategy specification (see Figure15.1). The primary
intent of this capability is to facilitate the transfer of DAKOTA’s iteration history data to an external mathematical
analysis and/or graphics plotting package (e.g., MATLAB, TECplot, Excel, S-plus, Minitab). Any evaluations
from DAKOTA’s internal finite differencing are suppressed, which leads to better data visualizations. This sup-
pression of lower level data is consistent with the data that is sent to the graphics windows, as described in
Section15.4. If this data suppression is undesirable, Section19.2.3describes an approach where every function
evaluation, even the ones from finite differencing, can be saved to a file in tabular format.

The default file name for the tabular output data is “dakota tabular.dat ” and the output from the “con-
tainer” optimization problem is shown in Figure15.2. This file contains the complete history of data requests
from NPSOL (8 requests map into a total of 40 function evaluations when including the central finite differenc-
ing). The first column is the data request number, the second and third columns are the design parameter values
(labeled in the example as “H” and “D”), the fourth column is the objective function (labeled “obj fn ”), and the
fifth column is the nonlinear equality constraint (labeled “nln eq con 1”).

15.4 Graphics Output

Graphics capabilities are available for monitoring the progress of an iterative study. The graphics option is invoked
by adding thegraphics flag in the strategy specification of the DAKOTA input file (see Figure15.1). The
graphics display the values of each response function (e.g., objective and constraint functions) and each parameter
for the function evaluations in the study. As for the tabular output described in Section15.3, internal finite

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

200 CHAPTER 15. OUTPUT FROM DAKOTA

Figure 15.3: DAKOTA 2D graphics for “container” problem showing history of an objective function, an equality
constraint, and two variables.

Figure 15.4: Options for DAKOTA 2D graphics.

difference evaluations are suppressed in order to omit this clutter from the graphics. Figure15.3 shows the
optimization iteration history for the container example.

If DAKOTA is executed on a remote machine, the DISPLAY variable in the user’s UNIX environment [48] may
need to be set to the local machine in order to display the graphics window.

The scroll bars which are located on each graph below and to the right of each plot may be operated by dragging
on the bars or pressing the arrows, both of which result in expansion/contraction of the axis scale. Clicking on the
“Options” button results in the window shown in Figure15.4, which allows the user to include min/max markers
on the vertical axis, vertical and horizontal axis labels, and a plot legend within the corresponding graphics plot.
In addition, the values of either or both axes may be plotted using a logarithmic scale (so long as all plot values
are greater than zero) and an encapsulated postscript (EPS) file, nameddakota graphic i .eps wherei is
the plot window number, can be created using the “Print” button.

In addition to these two-dimensional iteration history plots, three-dimensional surface plots can be generated
when using data fit surrogate models (see Section10.3.1) in combination with the graphics keyword. This feature
is currently available only if there are two parameters in the problem (a mechanism for selecting a two parameter
subset of ann-dimensional problem is not currently available). When DAKOTA is executed, a 3-D surface plot
is automatically spawned (Figure15.5shows an example from optimization of the Rosenbrock problem). The
creation of the 3-D surface plot pauses the advance of the iterative algorithm. To continue progress, click the right
mouse button or hit return while the mouse cursor is in the 3D graphics window.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

15.4. GRAPHICS OUTPUT 201

Figure 15.5: An example of the 3-D surface plotting that is available for surrogate-based optimization with two
design parameters.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

202 CHAPTER 15. OUTPUT FROM DAKOTA

The 3D graphics from the PLplot library have a dependency on external font files. If the 3D graphics fail with a
message similar to:

Cannot open library file: plstnd5.fnt
lib dir="<...some_path...>"
*** PLPLOT ERROR ***
Unable to open font file
Program aborted

then the solution is to locate the font files that came with your DAKOTA installation and set the$PLPLOT LIB
environment variable to point to them, e.g.:

setenv PLPLOT_LIB /home/<user_name>/Dakota/VendorPackages/plplot/data

15.5 Error Messages Output

A variety of error messages are printed by DAKOTA in the event that an error is detected in the input specification.
Some of the more common input errors, and the associated error messages, are described below. See also the
Common Specification Mistakes section in the DAKOTA Reference Manual [29].

One common mistake is the omission of the continuation symbol “\” when continuing the specifications in a
keyword block across multiple lines. When a continuation symbol is omitted, the keyword block is truncated at
the point of the omission (by the newline that is not escaped). If this truncation causes loss of a required input,
then an error message similar to the following will result:

Error: Expected required identifier for keyword ‘responses’.

If the truncation is caused by white space following the continuation line, then the error message will suggest that
this may be the case:

Parser detected syntax error: improperly escaped newline.
Please check your input file for any characters following a newline escape.

If the truncation results in omission of inputs that are optional, then the parser will still detect a syntax error in
the trailing specification that has been disconnected from its keyword block. This error will result in a message
similar to the following:

Parser detected syntax error: early keyword termination.
Please check your input file for missing newline escapes.

Incorrectly spelled specifications, such as‘‘numericl gradients’’ , will result in error messages of the
form:

Parser detected syntax error: unrecognized identifier ’numericl_gradients’
within responses keyword.

Please refer to the dakota.input.spec distributed with this executable.

The input parser catches syntax errors, but not logic errors. The fact that certain input combinations are erroneous
must be detected after parsing, at object construction time. For example, if ano gradients specification for
a response data set is combined with selection of a gradient-based optimization method, then this error must be
detected during set-up of the optimizer (see last line of listing):

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

15.5. ERROR MESSAGES OUTPUT 203

Running MPI executable in serial mode.
DAKOTA version 4.0 released 05/12/2006.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
methodName = npsol_sqp
gradientType = none
hessianType = none

Error: gradient-based optimizers require a gradient specification.

Another common mistake involves a mismatch between the amount of data expected on a function evaluation and
the data returned by the user’s simulation code or driver. The available response data is specified in the responses
keyword block, and the subset of this data needed for a particular evaluation is managed by the active set vector.
For example, if DAKOTA expects function values and gradients to be returned (as indicated by an active set vector
containing 3’s), but the user’s simulation code only returns function values, then the following error message is
generated:

At EOF: insufficient data for functionGradient 1

Unfortunately, descriptive error messages are not available for all possible failure modes of DAKOTA. If you en-
counter core dumps, segmentation faults, or other failures, please report the problem todakota-developers@development.sandia.gov.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

mailto:dakota-developers@development.sandia.gov

204 CHAPTER 15. OUTPUT FROM DAKOTA

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 16

Advanced Simulation Code Interfaces

16.1 Building an Interface to a Engineering Simulation Code

To interface an engineering simulation package to DAKOTA using one of the black-box interfaces (system call
or fork), pre- and post-processing functionality typically needs to be supplied (or developed) in order to transfer
the parameters from DAKOTA to the simulator input file and to extract the response values of interest from the
simulator’s output file for return to DAKOTA (see Figures1.1and12.1). This is often managed through the use
of scripting languages, such as C-shell [3], Bourne shell [8], Perl [102], or Python [71]. While these are common
and convenient choices for simulation drivers/filters, it is important to recognize that any executable file can be
used. If the user prefers, the desired pre- and post-processing functionality may also be compiled or interpreted
from any number of programming languages (C, C++, F77, F95, JAVA, Basic, etc.).

Under the/Dakota/GettingStarted/RosenSimulator directory, a simple example uses the Rosen-
brock test function as a mock engineering simulation code. Several scripts have been included to demonstrate
ways to accomplish the pre- and post-processing needs. Actual simulation codes will, of course, have different
pre- and post-processing requirements, and as such, this example serves only to demonstrate the issues associated
with interfacing a simulator. Modifications will almost surely be required for new applications.

16.1.1 Review of RosenSimulator Files

The RosenSimulator directory contains four important files:dakota rosenbrock.in (the DAKOTA input
file), simulator script (the simulation driver script),dprepro (a pre-processing utility), andtemplatedir/ros.template
(a template simulation input file).

Thedakota rosenbrock.in file specifies the study that DAKOTA will perform and, in the interface section,
describes the components to be used in performing function evaluations. In particular, it identifiessimulator script
as itsanalysis driver , as shown in Figure16.1.

Thesimulator script listed in Figure16.2is a short C-shell driver script that DAKOTA executes to perform
each function evaluation. The names of the parameters and results files are passed to the script on its command
line so that they can be referenced internal to the script by the variables$argv[1] and$argv[2] , respectively.
Thesimulator script is divided into five parts: set up, pre-processing, analysis, post-processing, and clean
up.

The set up portion strips the function evaluation number from$argv[1] and assigns it to the shell variable$num,

206 CHAPTER 16. ADVANCED SIMULATION CODE INTERFACES

DAKOTA INPUT FILE - dakota_rosenbrock.in
This sample Dakota input file optimizes the Rosenbrock function.
See p. 95 in Practical Optimization by Gill, Murray, and Wright.

method, \
npsol_sqp

variables, \
continuous_design = 2 \

cdv_initial_point -1.0 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptor ’x1’ ’x2’

interface, \
system \

asynchronous \
analysis_driver = ’simulator_script’ \
parameters_file = ’params.in’ \
results_file = ’results.out’ \
file_tag file_save aprepro

responses, \
num_objective_functions = 1 \
numerical_gradients \

fd_gradient_step_size = .000001 \
no_hessians

Figure 16.1: Thedakota rosenbrock.in input file.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

16.1. BUILDING AN INTERFACE TO A ENGINEERING SIMULATION CODE 207

#!/bin/csh -f
Sample simulator to Dakota system call script
See Advanced Simulation Code Interfaces chapter in Users Manual

$argv[1] is params.in.(fn_eval_num) FROM Dakota
$argv[2] is results.out.(fn_eval_num) returned to Dakota

Set up working directory

set num = ‘echo $argv[1] | cut -c 11-‘

cp -r templatedir workdir.$num
cd workdir.$num

PRE-PROCESSING

Use the following line if SNL’s APREPRO utility is used instead of DPrePro.
../aprepro -c ’*’ -q --nowarning ros.template ros.in

../dprepro ../$argv[1] ros.template ros.in

ANALYSIS

../rosenbrock_bb

POST-PROCESSING

grep ’Function value’ ros.out | cut -c 18- >! $argv[2]
NOTE: moving $argv[2] at the end of the script avoids any problems with
read race conditions.
mv $argv[2] ../.

Clean up

cd ..
#\rm -rf workdir.$num

Figure 16.2: Thesimulator script sample driver script.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

208 CHAPTER 16. ADVANCED SIMULATION CODE INTERFACES

which is then used to create a tagged working directory for a particular evaluation. For example, on the first evalu-
ation, “1” is stripped from “params.in.1 ” in order to create “workdir.1 ”. The primary reason for creating
separate working directories is so that the files associated with one simulation do not conflict with those for another
simulation. This is particularly important when executing concurrent simulations in parallel (to actually execute
function evaluations concurrently, uncomment theasynchronous line in dakota rosenbrock.in).

In the pre-processing portion, thesimulator script utilizesdprepro , which is a parsing utility used to ex-
tract the current variable values from a parameters file ($argv[1]) and then insert them into the simulator tem-
plate input file (ros.template) to create a new input file (ros.in) for the simulator. Internal to Sandia, the
APREPRO utility is often used for this purpose. For external sites where APREPRO is not available, the DPrePro
utility mentioned above is an alternative with many of the capabilities of APREPRO that is specifically tailored for
use with DAKOTA and is distributed with it (in/Dakota/GettingStarted/RosenSimulator/dprepro).
Additionally, the BPREPRO utility is another alternative to APREPRO (see [103]), and at Lockheed Martin sites,
the JPrePost utility is available as a JAVA pre- and post-processor [39]. The dprepro script partially listed in
Figure16.3will be used here for simplicity of discussion. It can use either DAKOTA’saprepro parameters file
format (see Section11.6.2) or DAKOTA’s standard format (see Section11.6.1), so either option may be selected
in the interface section of the DAKOTA input file. Theros.template file listed in Figure16.4is a template
simulation input file which contains targets for the incoming variable values, identified by the strings “{x1}” and
“{x2}”. These identifiers match the variable descriptors specified indakota rosenbrock.in . The template
input file is contrived as Rosenbrock has nothing to do with finite element analysis; it only mimics a finite ele-
ment code in order to demonstrate the simulator template process. Thedprepro script will search the simulator
template input file for fields marked with the curly brackets and then create a new file (ros.in) by replacing
these targets with the corresponding numerical values for the variables. As noted in the usage information for
dprepro and shown insimulator script , the names for the DAKOTA parameters file ($argv[1]), tem-
plate file (ros.template), and generated input file (ros.in) must be specified in thedprepro command
line arguments.

The third part of the script executes therosenbrock bb simulator. The input and output file names,ros.in
and ros.out , respectively, are hard-coded into the FORTRAN 77 programrosenbrock bb.f . When the
rosenbrock bb simulator is executed, the values forx1 andx2 are read in fromros.in , the Rosenbrock
function is evaluated, and the function value is written out toros.out .

The fourth part performs the post-processing and returns the response results to DAKOTA. Using the UNIX
“grep ” utility, the particular response values of interest are extracted from the raw simulator output and saved to
$argv[2] , which in the case of the first evaluation is “results.out.1 ”. This results file is moved up one
level, out of the working directory, so that DAKOTA may retrieve it. Note that moving the completed results file
up a level at the end of the evaluation avoids any problems with read race conditions (see Section17.2.1).

Finally, in the clean up phase, the working directory is removed to reduce the amount of disk storage required to
execute the study. If data from each simulation needs to be saved, this step can be commented out by inserting a
“#” character before “\rm -rf ”.

As an example of the data flow on a particular function evaluation, consider evaluation 60. The parameters file
for this evaluation (params.in.60) consists of:

{ DAKOTA_VARS = 2 }
{ x1 = 1.638248083045767e-01 }
{ x2 = 2.197300525769129e-02 }
{ DAKOTA_FNS = 1 }
{ ASV_1 = 1 }
{ DAKOTA_DER_VARS = 2 }
{ DVV_1 = 1 }
{ DVV_2 = 2 }

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

16.1. BUILDING AN INTERFACE TO A ENGINEERING SIMULATION CODE 209

#!/usr/bin/perl
#
DPREPRO: A Perl pre-processor for manipulating input files with DAKOTA.
__
#
Copyright (c) 2001, Sandia National Laboratories.
This software is distributed with DAKOTA under the GNU GPL.
For more information, see the README file in the top Dakota directory.
#
Usage: dprepro parameters_file template_input_file new_input_file
#
Reads the variable tags and values from the parameters_file and then
replaces each appearance of "{tag}" in the template_input_file with
its associated value in order to create the new_input_file. The
parameters_file written by DAKOTA may either be in standard format
(using "value tag" constructs) or in "aprepro" format (using
"{ tag = value }" constructs), and the variable tags used inside
template_input_file must match the variable descriptors specified in
the DAKOTA input file. Supports assignments and numerical expressions
in the template file, and the parameters file takes precedence in
the case of duplicate assignments (so that template file assignments
can be treated as defaults to be overridden).
__

Check for correct number of command line arguments and store the filenames.
if(@ARGV != 3) {

print STDERR "Usage: dprepro parameters_file template_input_file ",
"new_input_file\n";

exit(-1);
}
$params_file = $ARGV[0]; # DAKOTA parameters file (aprepro or standard format)
$template_file = $ARGV[1]; # template simulation input file
$new_file = $ARGV[2]; # new simulation input file with insertions

Regular expressions for numeric fields
$e = "-?(?:\\d+\\.?\\d*|\\.\\d+)[eEdD](?:\\+|-)?\\d+"; # exponential notation
$f = "-?\\d+\\.\\d*|-?\\.\\d+"; # floating point
$i = "-?\\d+"; # integer
$ui = "\\d+"; # unsigned integer
$n = "$e|$f|$i"; # numeric field

################################
Process DAKOTA parameters file
################################

Open parameters file for input.
open (DAKOTA_PARAMS, "<$params_file") || die "Can’t open $params_file: $!";

Figure 16.3: Partial listing of thedprepro script.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

210 CHAPTER 16. ADVANCED SIMULATION CODE INTERFACES

Title of Model: Rosenbrock black box

* Description: This is an input file to the Rosenbrock black box
* Fortran simulator. This simulator is structured so
* as to resemble the input/output from an engineering
* simulation code, even though Rosenbrock’s function
* is a simple analytic function. The node, element,
* and material blocks are dummy inputs.
*
* Input: x1 and x2
* Output: objective function value

node 1 location 0.0 0.0
node 2 location 0.0 1.0
node 3 location 1.0 0.0
node 4 location 1.0 1.0
node 5 location 2.0 0.0
node 6 location 2.0 1.0
node 7 location 3.0 0.0
node 8 location 3.0 1.0
element 1 nodes 1 3 4 2
element 2 nodes 3 5 6 4
element 3 nodes 5 7 8 6
element 4 nodes 7 9 10 8
material 1 elements 1 2
material 2 elements 3 4
variable 1 {x1}
variable 2 {x2}
end

Figure 16.4: Listing of theros.template file

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

16.1. BUILDING AN INTERFACE TO A ENGINEERING SIMULATION CODE 211

{ DAKOTA_AN_COMPS = 0 }

The first portion of the file indicates that there are two variables, followed by new values for variablesx1
and x2 , and one response function (an objective function), followed by an active set vector (ASV) value of
1. The ASV indicates the need to return the value of the objective function for these parameters (see Sec-
tion 11.7). Thedprepro script reads the variable values from this file, namely1.638248083045767e-01
and2.197300525769129e-02 for x1 andx2 respectively, and substitutes them in the{x1} and{x2} fields
of theros.template file. The final three lines of the resulting input file (ros.in) then appear as follows:

variable 1 1.638248083045767e-01
variable 2 2.197300525769129e-02
end

where all other lines are identical to the template file. Therosenbrock bb simulator acceptsros.in as its
input file and generates the following output to the fileros.out :

Beginning execution of model: Rosenbrock black box
Set up complete.
Reading nodes.
Reading elements.
Reading materials.
Checking connectivity...OK

Input value for x1 = 0.1638248083045767E+00
Input value for x2 = 0.2197300525769129E-01

Computing solution...Done

Function value = 0.7015563211077899E+00

Next, the appropriate data is extracted from the raw simulator output and returned in the results file. This
post-processing is relatively trivial in this case, and thesimulator script uses thegrep andcut utili-
ties to extract the value from the last line of theros.out output file and save it to$argv[2] , which is the
results.out.60 file for this evaluation. This single value provides the objective function value requested by
the ASV.

After 132 of these function evaluations, the following DAKOTA output shows the final solution using therosenbrock bb
simulator:

Exit NPSOL - Optimal solution found.

Final nonlinear objective value = 0.1165708E-06

NPSOL exits with INFORM code = 0
(see "Interpretation of output" section in NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
for complete NPSOL iteration history.

<<<<< Iterator npsol_sqp completed.
<<<<< Function evaluation summary: 132 total (132 new, 0 duplicate)
<<<<< Best parameters =

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

212 CHAPTER 16. ADVANCED SIMULATION CODE INTERFACES

9.9965861615e-01 x1
9.9931682096e-01 x2

<<<<< Best objective function =
1.1657079879e-07

<<<<< Best data captured at function evaluation 130
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:

Total CPU = 0.37 [parent = 0.37, child = 0]
Total wall clock = 17.2393

16.1.2 Adapting These Scripts to Another Simulation

To adapt this approach for use with another simulator, several steps need to be performed:

1. Create a template simulation input file by identifying the fields in an existing input file that correspond to
the variables of interest and then replacing them with{} identifiers (e.g.{cdv 1}, {cdv 2}, etc.) which
match the DAKOTA variable descriptors. Copy this template input file to a templatedir that will be used to
create working directories for the simulation.

2. Modify the dprepro arguments insimulator script to reflect names of the DAKOTA parameters
file (previously “$argv[1] ”), template file name (previously “ros.template ”) and generated input
file (previously “ros.in ”). Alternatively, use APREPRO, BPREPRO, or JPrePost to perform this step
(and adapt the syntax accordingly).

3. Modify the analysis section ofsimulator script to replace therosenbrock bb function call with
the new simulator name and command line syntax (typically including the input and output file names).

4. Change the post-processing section insimulator script to reflect the revised extraction process. At a
minimum, this would involve changing thegrep command to reflect the name of the output file, the string
to search for, and the characters to cut out of the captured output line. For more involved post-processing
tasks, invocation of additional tools may have to be added to the script.

5. Modify the dakota rosenbrock.in input file to reflect, at a minimum, updated variables and re-
sponses specifications.

These nonintrusive interfacing approaches can be used to rapidly interface with simulation codes. While generally
custom for each new application, typical interface development time is on the order of an hour or two. Thus, this
approach is scalable when dealing with many different application codes. Weaknesses of this approach include
the potential for loss of data precision (if care is not taken to preserve precision in pre- and post-processing file
I/O), a lack of robustness in post-processing (if the data capture is too simplistic), and scripting overhead (only
noticeable if the simulation time is on the order of a second or less).

If the application scope at a particular site is more focused and only a small number of simulation codes are of
interest, then more sophisticated interfaces may be warranted. For example, the economy of scale afforded by a
common simulation framework justifies additional effort in the development of a high quality DAKOTA interface.
In these cases, more sophisticated interfacing approaches could involve a more thoroughly developed black box
interface with robust support of a variety of inputs and outputs, or it might involve intrusive interfaces such as the
direct simulation interface discussed below in Section16.2or the SAND interface described in Section7.3.2.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

16.2. DEVELOPING A DIRECT SIMULATION INTERFACE 213

16.1.3 Additional Examples

A variety of additional examples of black-box interfaces to simulation codes are maintained in the
/Dakota/Applications directory in the source code distribution.

16.2 Developing a Direct Simulation Interface

If a more efficient interface to a simulation is desired (e.g., to eliminate process creation and file I/O overhead) or
if a targeted computer architecture cannot accommodate separate optimization and simulation processes (e.g., due
to lightweight operating systems on compute nodes of large parallel computers), then linking a simulation code
directly with DAKOTA may be desirable. This is an advanced capability of DAKOTA, and it requires a user to
have access to (and knowledge of) the DAKOTA source code, as well as the source code of the simulation code.

Three approaches are outlined below for developing direct linking between DAKOTA and a simulation: extension,
derivation, and sandwich. For additional information, refer to “Interfacing with DAKOTA as a Library” in the
DAKOTA Developers Manual [30].

Once performed, DAKOTA can bind with the new direct simulation interface using thedirect interface speci-
fication in combination with ananalysis driver , input filter or output filter specification that
corresponds to the name of the new subroutine.

16.2.1 Extension

The first approach to using the direct function capability with a new simulation (or new internal test function)
involvesextensionof the existingDirectFnApplicInterface class to include new simulation member functions.
In this case, the following steps are performed:

1. The functions to be invoked (analysis programs, input and output filters, internal testers) must have their
main programs changed into callable functions/subroutines.

2. The resulting callable function can then be added directly to the private member functions inDirectFnAp-
plicInterface if this function will directly access the DAKOTA data structures (variables, active set, and
response attributes of the class). It is more common to add a wrapper function toDirectFnApplicInter-
facewhich manages the DAKOTA data structures, but allows the simulator subroutine to retain a level of
independence from DAKOTA (see Salinas, ModelCenter, and MATLAB wrappers as examples).

3. The if-else blocks in thederived map if() , derived map ac(), andderived map of() member functions
of theDirectFnApplicInterface class must be extended to include the new function names as options. In
the new functions are class member functions, then DAKOTA data access may be performed through the
existing class member attributes and data objects do not need to be passed through the function parameter
list. In this case, the following function prototype is appropriate:

int function_name();

If, however, the new function names are not members of theDirectFnApplicInterface class, then an
extern declaration may additionally be needed and the function prototype should include passing of
the Variables, ActiveSet, and Response data members:

int function_name(const Dakota::Variables& vars,
const Dakota::ActiveSet& set, Dakota::Response& response);

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

214 CHAPTER 16. ADVANCED SIMULATION CODE INTERFACES

4. The DAKOTA system must be recompiled and linked with the new function object files or libraries.

Various header files may have to be included, particularly within theDirectFnApplicInterface class, in order to
recognize new external functions and compile successfully. Refer to the DAKOTA Developers Manual [30] for
additional information on theDirectFnApplicInterface class and the DAKOTA data types.

16.2.2 Derivation

As described in “Interfacing with DAKOTA as a Library” in the DAKOTA Developers Manual [30], a derivation
approach can be employed to further increase the level of independence between DAKOTA and the host applica-
tion. In this case, rather thanaddinga new function to the existingDirectFnApplicInterface class, a new inter-
face class is derived fromDirectFnApplicInterface which redefinesthe derived map if() , derived map ac(),
andderived map of() virtual functions.

In the approach of Section16.2.3below, the class derivation approach avoids the need to recompile the DAKOTA
library when the simulation or its direct interface class is modified.

16.2.3 Sandwich

In a “sandwich” implementation, a simulator provides both the “front end” and “back end” with DAKOTA sand-
wiched in the middle. To accomplish this approach, the simulation code is responsible for interacting with the user
(the front end), links DAKOTA in as a library (refer to “Interfacing with DAKOTA as a Library” in the DAKOTA
Developers Manual [30]), and plugs in a derived direct interface class to provide a closely-coupled mechanism
for performing function evaluations (the back end). This approach makes DAKOTA services available to other
codes and frameworks and is currently used by Sandia codes such as Xyce (electrical simulation), Sage (CFD),
and SIERRA (multiphysics).

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 17

Parallel Computing

17.1 Overview

This chapter describes the various parallel computing capabilities provided by DAKOTA. The range of capabilities
is extensive and can be daunting at first; therefore, this chapter takes an incremental approach in first describing
the simplest single-level parallel computing models (Section17.2) using asynchronous local, message passing,
and hybrid approaches. More advanced uses of DAKOTA can build on this foundation to exploit multiple levels
of parallelism, as described in Section17.3.

17.1.1 Categorization of parallelism

To understand the parallel computing possibilities, it is instructive to first categorize the opportunities for exploit-
ing parallelism into four main areas [33], consisting of coarse-grained and fine-grained parallelism opportunities
within algorithms and their function evaluations:

1. Algorithmic coarse-grained parallelism: This parallelism involves the concurrent execution of independent
function evaluations, where a “function evaluation” is defined as a data request from an algorithm (which
may involve value, gradient, and Hessian data from multiple objective and constraint functions). This con-
cept can also be extended to the concurrent execution of multiple “iterators” within a “strategy.” Examples
of algorithms containing coarse-grained parallelism include:

• Gradient-based algorithms: finite difference gradient evaluations, speculative optimization, parallel
line search.

• Nongradient-based algorithms: genetic algorithms (GAs), pattern search (PS), Monte Carlo sampling.

• Approximate methods: design of computer experiments for building surrogate models.

• Concurrent-iterator strategies: optimization under uncertainty, branch and bound, multi-start local
search, Pareto set optimization, island-model GAs.

2. Algorithmic fine-grained parallelism: This involves computing the basic computational steps of an opti-
mization algorithm (i.e., the internal linear algebra) in parallel. This is primarily of interest in large-scale
optimization problems and simultaneous analysis and design (SAND).

216 CHAPTER 17. PARALLEL COMPUTING

3. Function evaluation coarse-grained parallelism: This involves concurrent computation of separable parts
of a single function evaluation. This parallelism can be exploited when the evaluation of the response data
set requires multiple independent simulations (e.g. multiple loading cases or operational environments) or
multiple dependent analyses where the coupling is applied at the optimizer level (e.g., multiple disciplines
in the individual discipline feasible formulation [19]).

4. Function evaluation fine-grained parallelism: This involves parallelization of the solution steps within a
single analysis code. The DOE laboratories have developed parallel analysis codes in the areas of nonlinear
mechanics, structural dynamics, heat transfer, computational fluid dynamics, shock physics, and many
others.

By definition, coarse-grained parallelism requires very little inter-processor communication and is therefore “em-
barrassingly parallel,” meaning that there is little loss in parallel efficiency due to communication as the number
of processors increases. However, it is often the case that there are not enough separable computations on each
algorithm cycle to utilize the thousands of processors available on MP machines. For example, a thermal safety
application [34] demonstrated this limitation with a pattern search optimization in which the maximum speedup
exploitingonlycoarse-grained algorithmic parallelism was shown to be limited by the size of the design problem
(coordinate pattern search has at most2n independent evaluations per cycle forn design variables).

Fine-grained parallelism, on the other hand, involves much more communication among processors and care must
be taken to avoid the case of inefficient machine utilization in which the communication demands among proces-
sors outstrip the amount of actual computational work to be performed. For example, a chemically-reacting flow
application [33] illustrated this limitation for a simulation of fixed size in which it was shown that, while simu-
lation run time did monotonically decrease with increasing number of processors, the relative parallel efficiency
Ê of the computation for fixed model size decreased rapidly (fromÊ ≈ 0.8 at 64 processors tôE ≈ 0.4 at 512
processors). This was due to the fact that the total amount of computation was approximately fixed, whereas the
communication demands were increasing rapidly with increasing numbers of processors. Therefore, there is a
practical limit on the number of processors that can be employed for fine-grained parallel simulation of a partic-
ular model size, and only for extreme model sizes can thousands of processors be efficiently utilized in studies
exploiting fine-grained parallelism alone.

These limitations point us to the exploitation of multiple levels of parallelism, in particular the combination
of coarse-grained and fine-grained approaches. This will allow us to execute fine-grained parallel simulations
on sets of processors where they are most efficient and then replicate this efficiency with many coarse-grained
instances. From a software perspective, coarse-grained parallelism by itself (many instances of a single-processor
simulation) and fine-grained parallelism by itself (a single instance of a large multiprocessor simulation) can be
considered to cover two ends of a spectrum, and we are interested in also supporting anywhere in between (any
number of instances of any size simulation). Single-level parallelism approaches are described in Section17.2,
and multilevel parallelism approaches are discussed in Section17.3.

The available concurrency in function evaluation parallelism is determined by the aspects of a particular systems
analysis application, and is therefore highly application-dependent. Algorithmic parallelism, on the other hand,
is largely determined by the selection and configuration of a particular algorithm. These selection possibilities
within DAKOTA are outlined in the following section.

17.1.2 Parallel DAKOTA algorithms

In DAKOTA Version 4.0, the following parallel algorithms, comprised of iterators and strategies, provide support
for coarse-grained algorithmic parallelism.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

17.1. OVERVIEW 217

Parallel iterators

• Gradient-based optimizers: CONMIN, DOT, NLPQL, NPSOL, and OPT++ can all exploit parallelism
through the use of DAKOTA’s native finite differencing routine (selected withmethod source dakota
in the responses specification), which will perform concurrent evaluations for each of the parameter offsets.
Forn variables, forward differences result in ann+1 concurrency and central differences result in a2n+1
concurrency. In addition, CONMIN, DOT, and OPT++ can use speculative gradient techniques [11] to
obtain better parallel load balancing. By speculating that the gradient information associated with a given
line search point will be used later and computing the gradient information in parallel at the same time as
the function values, the concurrency during the gradient evaluation and line search phases can be balanced.
NPSOL does not use speculative gradients since this approach is superseded by NPSOL’s gradient-based
line search in user-supplied derivative mode. NLPQL also supports a distributed line search capability for
generating concurrency [90].

• Nongradient-based optimizers: JEGA methods and most COLINY methods support parallelism. Serial
COLINY methods include Solis-Wets (coliny solis wets) and certainexploratory moves op-
tions (adaptive pattern andmulti step) in pattern search (coliny pattern search). PDS
within OPT++ (optpp pds) is also currently serial due to limitations in the OPT++ interface. Finally,
coliny pattern search andcoliny apps support dynamic job queues managed with nonblock-
ing synchronization.

• Least squares methods: in an identical manner to the gradient-based optimizers, NL2SOL, NLSSOL, and
Gauss-Newton can exploit parallelism through the use of DAKOTA’s native finite differencing routine. In
addition, NL2SOL and Gauss-Newton can use speculative gradient techniques to obtain better parallel load
balancing. NLSSOL does not use speculative gradients since this approach is superseded by NLSSOL’s
gradient-based line search in user-supplied derivative mode.

• Parameter studies: all parameter study methods (vector , list , centered , andmultidim) support
parallelism. These methods avoid internal synchronization points, so all evaluations are available for con-
current execution.

• Design of experiments: alldace (grid , random , oas , lhs , oa lhs , box behnken , andcentral composite),
fsu quasi mc (halton andhammersley), andfsu cvt methods support parallelism.

• Uncertainty quantification: all nondeterministic methods (nond sampling , nond reliability ,
nond polynomial chaos , andnond evidence) support parallelism. In the case ofnond reliability ,
gradient-based optimization is involved and parallelism can be exploited through the use of DAKOTA’s na-
tive finite differencing routine.

Parallel strategies

Certain strategies support concurrency in multiple iterator executions. Currently, the strategies which can exploit
this level of parallelism are:

• Branch and bound: optimization strategy for mixed-integer nonlinear programming with noncategorical
discrete variables.

• Pareto-set optimization: multiobjective optimization strategy for computing sets of points on the Pareto
front of nondominated solutions.

• Multi-start iteration: strategy for executing multiple instances of an iterator from different starting points.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

218 CHAPTER 17. PARALLEL COMPUTING

In the branch and bound case, the available iterator concurrency grows as the tree develops more branches, so some
of the iterator servers may be idle in the initial phases. Pareto-set and multi-start, however, have a fixed set of jobs
to perform and should exhibit good load balancing. In future releases, techniques employing nested models (e.g.,
optimization under uncertainty and second-order probability, see Section10.4) will support concurrent iterator
parallelism.

17.2 Single-level parallelism

Figure 17.1: External, internal, and hybrid
job management.

DAKOTA’s parallel facilities support a broad range of computing
hardware, from custom massively parallel supercomputers on the
high end, to clusters and networks of workstations (NOWs) in the
middle range, to desktop multiprocessors on the low end. Given the
reduced scale in the middle to low ranges, it is more common to
exploit only one of the levels of parallelism; however, this can still
be quite effective in reducing the time to obtain a solution. Three
single-level parallelism models will be discussed, and are depicted
in Figure17.1:

• asynchronous local: DAKOTA executes on a single processor,
but launches multiple jobs concurrently using asynchronous
job launching techniques.

• message passing: DAKOTA executes in parallel using mes-
sage passing to communicate between processors. A single
job is launched per processor using synchronous job launch-
ing techniques.

• hybrid: a combination of message passing and asynchronous
local. DAKOTA executes in parallel across multiple proces-
sors and launches concurrent jobs on each processor.

In each of these cases, jobs are executing concurrently and must be collected in some manner for return to an
algorithm. Blocking and nonblocking approaches are provided for this, where the blocking approach is used in
most cases:

• blocking synchronization: all jobs in the queue are completed before exiting the scheduler and returning
the set of results to the algorithm. The job queue fills and then empties completely, which provides a
synchronization point for the algorithm.

• nonblocking synchronization: the job queue is dynamic, with jobs entering and leaving continuously. There
are no defined synchronization points for the algorithm, which requires specialized algorithm logic (only
currently supported bycoliny pattern search andcoliny apps , which are sometimes referred
to as “fully asynchronous” algorithms).

Given these job management capabilities, it is worth noting that the popular term “asynchronous” can be ambigu-
ous when used in isolation. In particular, it can be important to qualify whether one is referring to “asynchronous
job launch” (synonymous with any of the three concurrent job launch approaches described above) or “asyn-
chronous job recovery” (synonymous with the latter nonblocking job synchronization approach).

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

17.2. SINGLE-LEVEL PARALLELISM 219

17.2.1 Asynchronous Local Parallelism

This section describes software components which manage simulation invocations local to a processor. These
invocations may be either synchronous (i.e., blocking) or asynchronous (i.e., nonblocking). Synchronous evalu-
ations proceed one at a time with the evaluation running to completion before control is returned to DAKOTA.
Asynchronous evaluations are initiated such that control is returned to DAKOTA immediately, prior to evaluation
completion, thereby allowing the initiation of additional evaluations which will execute concurrently.

The synchronous local invocation capabilities are used in two contexts: (1) by themselves to provide serial ex-
ecution on a single processor, and (2) in combination with DAKOTA’s message-passing schedulers to provide
function evaluations local to each processor. Similarly, the asynchronous local invocation capabilities are used
in two contexts: (1) by themselves to launch concurrent jobs from a single processor that rely on external means
(e.g., operating system, job queues) for assignment to other processors, and (2) in combination with DAKOTA’s
message-passing schedulers to provide a hybrid parallelism (see Section17.2.3). Thus, DAKOTA supports any of
the four combinations of synchronous or asynchronous local combined with message passing or without.

Asynchronous local schedulers may be used for managing concurrent function evaluations requested by an iter-
ator or for managing concurrent analyses within each function evaluation. The former iterator/evaluation con-
currency supports either blocking (all jobs in the queue must be completed by the scheduler) or nonblocking
(dynamic job queue may shrink or expand) synchronization, where blocking synchronization is used by most
iterators and nonblocking synchronization is used by fully asynchronous algorithms such ascoliny apps and
coliny pattern search . The latter evaluation/analysis concurrency is restricted to blocking synchroniza-
tion. The “Asynchronous Local” column in Table17.1summarizes these capabilities.

DAKOTA supports three local simulation invocation approaches based on the direct function, system call, and
fork simulation interfaces. For each of these cases, an input filter, one or more analysis drivers, and an output
filter make up the interface, as described in Section12.4.

Direct function synchronization

The direct function capability may be used synchronously. Synchronous operation of the direct function simu-
lation interface involves a standard procedure call to the input filter, if present, followed by calls to one or more
simulations, followed by a call to the output filter, if present (refer to Sections12.3-12.4for additional details and
examples). Each of these components must be linked as functions within DAKOTA. Control does not return to
the calling code until the evaluation is completed and the response object has been populated.

Asynchronous operation will be supported in the future and will involve the use of multithreading (e.g., POSIX
threads) to accomplish multiple simultaneous simulations. When spawning a thread (e.g., usingpthread create),
control returns to the calling code after the simulation is initiated. In this way, multiple threads can be created
simultaneously. An array of responses corresponding to the multiple threads of execution would then be recovered
in a synchronize operation (e.g., usingpthread join).

System call synchronization

The system call capability may be used synchronously or asynchronously. In both cases, thesystem utility from
the standard C library is used. Synchronous operation of the system call simulation interface involves spawning
the system call (containing the filters and analysis drivers bound together with parentheses and semi-colons) in
the foreground. Control does not return to the calling code until the simulation is completed and the response file
has been written. In this case, the possibility of a race condition (see below) does not exist and any errors during
response recovery will cause an immediate abort of the DAKOTA process (note: detection of the string “fail” is

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

220 CHAPTER 17. PARALLEL COMPUTING

not a response recovery error; see Chapter20).

Asynchronous operation involves spawning the system call in the background, continuing with other tasks (e.g.,
spawning other system calls), periodically checking for process completion, and finally retrieving the results. An
array of responses corresponding to the multiple system calls is recovered in a synchronize operation.

In this synchronize operation, completion of a function evaluation is detected by testing for the existence of the
evaluation’s results file using thestat utility [65]. Care must be taken when using asynchronous system calls
since they are prone to the race condition in which the results file passes the existence test but the recording of the
function evaluation results in the file is incomplete. In this case, the read operation performed by DAKOTA will
result in an error due to an incomplete data set. In order to address this problem, DAKOTA contains exception
handling which allows for a fixed number of response read failures per asynchronous system call evaluation.
The number of allowed failures must have a limit, so that an actual response format error (unrelated to the race
condition) will eventually abort the system. Therefore, to reduce the possibility of exceeding the limit on allowable
read failures,the user’s interface should minimize the amount of time an incomplete results file exists in the
directory where its status is being tested. This can be accomplished through two approaches: (1) delay the
creation of the results file until the simulation computations are complete and all of the response data is ready to
be written to the results file, or (2) perform the simulation computations in a subdirectory, and as a last step, move
the completed results file into the main working directory where its existence is being queried.

If concurrent simulations are executing in a shared disk space, then care must be taken to maintain independence
of the simulations. In particular, the parameters and results files used to communicate between DAKOTA and the
simulation, as well as any other files used by this simulation, must be protected from other files of the same name
used by the other concurrent simulations. With respect to the parameters and results files, these files may be made
unique through the use of thefile tag option (e.g.,params.in.1 , results.out.1 , etc.) or the default
UNIX temporary file option (e.g.,/var/tmp/aaa0b2Mfv , etc.). However, if additional simulation files must
be protected (e.g.,model.i , model.o , model.g , model.e , etc.), then an effective approach is to create a
tagged working subdirectory for each simulation instance. Section16.1provides an example system call interface
that demonstrates both the use of tagged working directories and the relocation of completed results files to avoid
the race condition.

Fork synchronization

The fork capability is quite similar to the system call; however, it has the advantage that asynchronous fork invoca-
tions can avoid the results file race condition that may occur with asynchronous system calls (see Section12.3.4).
The fork interface invokes the filters and analysis drivers using thefork andexec family of functions, and
completion of these processes is detected using thewait family of functions. Sincewait is based on a process
id handle rather than a file existence test, an incomplete results file is not an issue.

Depending on the platform, the fork simulation interface executes either avfork or a fork call. These calls
generate a new child process with its own UNIX process identification number, which functions as a copy of the
parent process (dakota). Theexecvp function is then called by the child process, causing it to be replaced by
the analysis driver or filter. For synchronous operation, the parent dakota process then awaits completion of the
forked child process through a blocking call towaitpid . On most platforms, thefork/exec procedure is
efficient since it operates in a copy-on-write mode, and no copy of the parent is actually created. Instead, the
parents address space is borrowed until theexec function is called.

The fork/exec behavior for asynchronous operation is similar to that for synchronous operation, the only
difference being that dakota invokes multiple simulations through thefork/exec procedure prior to recovering
response results for these jobs using thewait function. The combined use offork/exec andwait functions
in asynchronous mode allows the scheduling of a specified number of concurrent function evaluations and/or

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

17.2. SINGLE-LEVEL PARALLELISM 221

concurrent analyses.

Asynchronous Local Example

The test fileDakota/test/dakota dace.in computes 49 orthogonal array samples, which may be evalu-
ated concurrently using parallel computing. When executing DAKOTA with this input file on a single processor,
the following execution syntax may be used:

dakota -i dakota_dace.in

For serial execution (the default), the interface specification withindakota dace.in would appear similar to

interface, \
system \

analysis_driver = ’text_book’

which results in function evaluation output similar to the following (foroutput set toquiet mode):

>>>>> Running dace iterator.

Begin Function Evaluation 1

(text_book /tmp/fileG32LEp /tmp/fileP8uYDC)

Begin Function Evaluation 2

(text_book /tmp/fileiqIEEP /tmp/fileBEFlF2)

<snip>

Begin Function Evaluation 49

(text_book /tmp/file4Xyp2p /tmp/filezCohcE)

<<<<< Iterator dace completed.

where it is evident that each function evaluation is being performed sequentially.

For parallel execution using asynchronous local approaches, the DAKOTA execution syntax is unchanged as
DAKOTA is still launched on a single processor. However, the interface specification is augmented to include
theasynchronous keyword with optional concurrency limiter to indicate that multipleanalysis driver
instances will be executed concurrently:

interface, \
system asynchronous evaluation_concurrency = 4 \

analysis_driver = ’text_book’

which results in output excerpts similar to the following:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

222 CHAPTER 17. PARALLEL COMPUTING

>>>>> Running dace iterator.

Begin Function Evaluation 1

(Asynchronous job 1 added to queue)

Begin Function Evaluation 2

(Asynchronous job 2 added to queue)

<snip>

Begin Function Evaluation 49

(Asynchronous job 49 added to queue)

Blocking synchronize of 49 asynchronous evaluations
First pass: initiating 4 asynchronous jobs
Initiating function evaluation 1
(text_book /tmp/fileG2uzVX /tmp/fileSqceY8) &
Initiating function evaluation 2
(text_book /tmp/filegFLu5j /tmp/fileeycMcv) &
Initiating function evaluation 3
(text_book /tmp/file8EI3kG /tmp/fileuY2ltR) &
Initiating function evaluation 4
(text_book /tmp/fileEZpDC2 /tmp/fileeMDVLd) &
Second pass: self-scheduling 45 remaining jobs
Waiting on completed jobs
Function evaluation 1 has completed
Initiating function evaluation 5
(text_book /tmp/file8SWrXo /tmp/filem00Y8z) &
Function evaluation 2 has completed
Initiating function evaluation 6
(text_book /tmp/file6PQ5kL /tmp/filegRydxW) &
Function evaluation 3 has completed
Initiating function evaluation 7
(text_book /tmp/filesjB8J7 /tmp/fileUpr4Wi) &
Function evaluation 4 has completed
Initiating function evaluation 8
(text_book /tmp/fileCI6Bbu /tmp/fileWSBaqF) &

<snip>

Function evaluation 49 has completed

<<<<< Iterator dace completed.

where it is evident that each of the 49 jobs is first queued and then a blocking synchronization is performed. This
synchronization uses a simple scheduler that initiates 4 jobs and then replaces completing jobs with new ones
until all 49 are complete.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

17.2. SINGLE-LEVEL PARALLELISM 223

The default job concurrency for asynchronous local parallelism is all that is available from the algorithm (49 in
this case), which could be too many for the computational resources or their usage policies. The concurrency
level specification (4 in this case) instructs the scheduler to keep 4 jobs running concurrently, which would be
appropriate for, e.g., a dual-processor dual-core workstation. In this case, it is the operating system’s responsibility
to assign the concurrenttext book jobs to available processors/cores. Specifying greater concurrency than that
supported by the hardware will result in additional context switching within a multitasking operating system
and will generally degrade performance. Note however that, in this example, there are a total of 5 processes
running, one for DAKOTA and four for the concurrent function evaluations. Since the DAKOTA process checks
periodically for job completion and sleeps in between checks, it is relatively lightweight and does not require a
dedicated processor.

17.2.2 Message Passing Parallelism

DAKOTA uses a “single program-multiple data” (SPMD) parallel programming model. It uses message-passing
routines from the Message Passing Interface (MPI) standard [54], [93] to communicate data between processors.
The SPMD designation simply denotes that the same DAKOTA executable is loaded on all processors during the
parallel invocation. This differs from the MPMD model (“multiple program-multiple data”) which would have
the DAKOTA executable on one or more processors communicating directly with simulator executables on other
processors. The MPMD model has some advantages, but heterogeneous executable loads are not supported by
all parallel environments. Moreover, the MPMD model requires simulation code intrusion on the same order
as conversion to a subroutine, so subroutine conversion (see Section16.2) in a direct-linked SPMD model is
preferred.

Partitioning

Figure 17.2: Communicator partitioning models.

A level of message passing parallelism can use either of two
processor partitioning models:

• Dedicated master: a single processor is dedicated to
scheduling operations and the remaining processors
are split into server partitions.

• Peer partition: all processors are allocated to server
partitions and the loss of a processor to scheduling is
avoided.

These models are depicted in Figure17.2. The peer partition
is desirable since it utilizes all processors for computation;
however, it requires either the use of sophisticated mecha-
nisms for distributed scheduling or a problem for which static
scheduling of concurrent work performs well (seeScheduling
below). If neither of these characteristics is present, then use
of the dedicated master partition supports a dynamic schedul-
ing which assures that server idleness is minimized.

Scheduling

The following scheduling approaches are available within a level of message passing parallelism:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

224 CHAPTER 17. PARALLEL COMPUTING

• Self-scheduling: in the dedicated master model, the master processor manages a single processing queue
and maintains a prescribed number of jobs (usually one) active on each slave. Once a slave server has
completed a job and returned its results, the master assigns the next job to this slave. Thus, the slaves
themselves determine the schedule through their job completion speed. This provides a simple dynamic
scheduler in that heterogeneous processor speeds and/or job durations are naturally handled, provided there
are sufficient instances scheduled through the servers to balance the variation.

• Static scheduling: if scheduling is statically determined at start-up, then no master processor is needed
to direct traffic and a peer partitioning approach is applicable. If the static schedule is a good one (ideal
conditions), then this approach will have superior performance. However, heterogeneity, when not known
a priori, can very quickly degrade performance since there is no mechanism to adapt.

In addition, the following scheduling approach is provided by PICO for the scheduling of concurrent optimizations
within the branch and bound strategy:

• Distributed scheduling: in this approach, a peer partition is used and each peer maintains a separate queue of
pending jobs. When one peer’s queue is smaller than the other queues, it requests work from its peers (prior
to idleness). In this way, it can adapt to heterogeneous conditions, provided there are sufficient instances
to balance the variation. Each partition performs communication between computations, and no processors
are dedicated to scheduling. Furthermore, it distributes scheduling load beyond a single processor, which
can be important for large numbers of concurrent jobs (whose scheduling might overload a single master) or
for fault tolerance (avoiding a single point of failure). However, it involves relatively complicated logic and
additional communication for queue status and job migration, and its performance is not always superior
since a partition can become work-starved if its peers are locked in computation (Note: this logic can be
somewhat simplified if a separate thread can be created for communication and migration of jobs).

Message passing schedulers may be used for managing concurrent iterator executions within a strategy, concurrent
evaluations within an iterator, or concurrent analyses within an evaluation. In each of these cases, the message
passing scheduler is currently restricted to blocking synchronization, in that all jobs in the queue are completed
before exiting the scheduler and returning the set of results to the algorithm. Nonblocking message-passing sched-
ulers are under development for the iterator/evaluation concurrency level in support of fully asynchronous algo-
rithms which do not contain synchronization points (e.g.,coliny apps andcoliny pattern search).
Message passing is also used within a fine-grained parallel analysis code, although this does not involve the use of
DAKOTA schedulers (DAKOTA may, at most, pass a communicator partition to the simulation). The “Message
Passing” column in Table17.1summarizes these capabilities.

Message Passing Example

Revisiting the test filedakota dace.in , DAKOTA will now compute the 49 orthogonal array samples using
a message passing approach. In this case, a parallel launch utility is used to execute DAKOTA across multiple
processors using syntax similar to the following:

mpirun -np 5 -machinefile machines dakota -i dakota_dace.in

Since the asynchronous local parallelism will not be used, the interface specification does not include theasynchronous
keyword and would appear similar to:

interface, \
system \

analysis_driver = ’text_book’

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

17.2. SINGLE-LEVEL PARALLELISM 225

The relevant excerpts from the DAKOTA output for a dedicated master partition and self-schedule, the default
when the maximum concurrency (49) exceeds the available capacity (5), would appear similar to the following:

Running MPI executable in parallel on 5 processors.

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 5 peer/static
concurrent evaluations 4 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

>>>>> Running dace iterator.

Begin Function Evaluation 1

(Asynchronous job 1 added to queue)

Begin Function Evaluation 2

(Asynchronous job 2 added to queue)

<snip>

Begin Function Evaluation 49

(Asynchronous job 49 added to queue)

Blocking synchronize of 49 asynchronous evaluations
First pass: assigning 4 jobs among 4 servers
Master assigning function evaluation 1 to server 1
Master assigning function evaluation 2 to server 2
Master assigning function evaluation 3 to server 3
Master assigning function evaluation 4 to server 4
Second pass: self-scheduling 45 remaining jobs
Waiting on completed jobs
job 1 has returned from slave server 1
Master assigning function evaluation 5 to server 1
job 2 has returned from slave server 2
Master assigning function evaluation 6 to server 2
Waiting on completed jobs
job 3 has returned from slave server 3
Master assigning function evaluation 7 to server 3
job 4 has returned from slave server 4
Master assigning function evaluation 8 to server 4

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

226 CHAPTER 17. PARALLEL COMPUTING

<snip>

job 49 has returned from slave server 2

<<<<< Iterator dace completed.

where it is evident that each of the 49 jobs is first queued and then a blocking synchronization is performed. This
synchronization uses a dynamic scheduler that initiates four jobs by sending a message from the master to each
of the four servers and then replaces completing jobs with new ones until all 49 are complete. It is important to
note that job execution local to each of the four servers is synchronous.

17.2.3 Hybrid Parallelism

The asynchronous local approaches described in Section17.2.1can be considered to rely onexternalscheduling
mechanisms, since it is generally the operating system or some external queue/load sharing software that allocates
jobs to processors. Conversely, the message-passing approaches described in Section17.2.2rely on internal
scheduling mechanisms to distribute work among processors. These two approaches provide building blocks
which can be combined in a variety of ways to manage parallelism at multiple levels. At one extreme, DAKOTA
can execute on a single processor and rely completely on external means to map all jobs to processors (i.e., using
asynchronous local approaches). At the other extreme, DAKOTA can execute on many processors and manage all
levels of parallelism, including the parallel simulations, using completely internal approaches (i.e., using message
passing at all levels as in Figure17.4). While all-internal or all-external approaches are common cases, many
additional approaches exist between the two extremes in which some parallelism is managed internally and some
is managed externally.

These combined approaches are referred to ashybrid parallelism, since the internal distribution of work based on
message-passing is being combined with external allocation using asynchronous local approaches1. Figure17.1
depicts the asynchronous local, message-passing, and hybrid approaches for a dedicated-master partition. Ap-
proaches (b) and (c) both use MPI message-passing to distribute work from the master to the slaves, and ap-
proaches (a) and (c) both manage asynchronous jobs local to a processor. The hybrid approach (c) can be seen to
be a combination of (a) and (b) since jobs are being internally distributed to slave servers through message-passing
and each slave server is managing multiple concurrent jobs using an asynchronous local approach. From a dif-
ferent perspective, one could consider (a) and (b) to be special cases within the range of configurations supported
by (c). The hybrid approach is useful for supercomputers that maintain a service/compute node distinction and
for supercomputers or networks of workstations that involve clusters of symmetric multiprocessors (SMPs). In
the service/compute node case, concurrent multiprocessor simulations are launched into the compute nodes from
the service node partition. While an asynchronous local approach from a single service node would be sufficient,
spreading the application load by running DAKOTA in parallel across multiple service nodes results in better
performance [35]. If the number of concurrent jobs to be managed in the compute partition exceeds the number
of available service nodes, then hybrid parallelism is the preferred approach. In the case of a cluster of SMPs
(or network of multiprocessor workstations), message-passing can be used to communicate between SMPs, and
asynchronous local approaches can be used within an SMP. Hybrid parallelism can again result in improved per-
formance, since the total number of DAKOTA MPI processes is reduced in comparison to a pure message-passing
approach over all processors.

Hybrid schedulers may be used for managing concurrent evaluations within an iterator or concurrent analyses

1The term “hybrid parallelism” is often used to describe the combination of MPI message passing and OpenMP shared memory parallelism
models. This can be considered to be a special case of the meaning here, as OpenMP is based on threads, which is analagous to asynchronous
local usage of the direct simulation interface.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

17.2. SINGLE-LEVEL PARALLELISM 227

within an evaluation. In both of these cases, the scheduler is currently restricted to blocking synchronization,
although as for message-passing schedulers described in Section17.2.2, nonblocking schedulers are under de-
velopment for the iterator/evaluation concurrency level. The “Hybrid” column in Table17.1summarizes these
capabilities.

Hybrid Example

Revisiting the test filedakota dace.in , DAKOTA will now compute the 49 orthogonal array samples using
a hybrid approach. As for the message passing case, a parallel launch utility is used to execute DAKOTA across
multiple processors:

mpirun -np 5 -machinefile machines dakota -i dakota_dace.in

Since the asynchronous local parallelism will also be used, the interface specification includes theasynchronous
keyword and appears similar to

interface, \
system asynchronous evaluation_concurrency = 2 \

analysis_driver = ’text_book’

In the hybrid case, the specification of the desired concurrency level must be included, since the default is no
longer all available (as it is for asynchronous local parallelism). Rather the default is to employ message passing
parallelism, and hybrid parallelism is only available through the specification of asynchronous concurrency greater
than one.

The relevant excerpts of the DAKOTA output for a dedicated master partition and self schedule, the default
when the maximum concurrency (49) exceeds the maximum available capacity (10), would appear similar to the
following:

Running MPI executable in parallel on 5 processors.

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 5 peer/static
concurrent evaluations 4 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

>>>>> Running dace iterator.

Begin Function Evaluation 1

(Asynchronous job 1 added to queue)

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

228 CHAPTER 17. PARALLEL COMPUTING

Begin Function Evaluation 2

(Asynchronous job 2 added to queue)

<snip>

Begin Function Evaluation 49

(Asynchronous job 49 added to queue)

Blocking synchronize of 49 asynchronous evaluations
First pass: assigning 8 jobs among 4 servers
Master assigning function evaluation 1 to server 1
Master assigning function evaluation 2 to server 2
Master assigning function evaluation 3 to server 3
Master assigning function evaluation 4 to server 4
Master assigning function evaluation 5 to server 1
Master assigning function evaluation 6 to server 2
Master assigning function evaluation 7 to server 3
Master assigning function evaluation 8 to server 4
Second pass: self-scheduling 41 remaining jobs
Waiting on completed jobs

<snip>

job 49 has returned from slave server 4

<<<<< Iterator dace completed.

where it is evident that each of the 49 jobs is first queued and then a blocking synchronization is performed. This
synchronization uses a dynamic scheduler that initiates eight jobs by sending two messages to each of the four
servers and then replaces completing jobs with new ones until all 49 are complete. It is important to note that
job execution local to each of the four servers is asynchronous. If the available capacity was increased to meet
or exceed the maximum concurrency (e.g., mpirun on 10 processors withevaluation concurrency = 5),
then a peer partition with static schedule would be selected by default.

17.3 Multilevel parallelism

Parallel computers within the Department of Energy national laboratories have exceeded a hundred trillion floating
point operations per second (100 TeraFLOPS) in Linpack benchmarks and are expected to achieve PetaFLOPS
speeds in the near future. This performance is achieved through the use of massively parallel (MP) processing
usingO[103−104] processors. In order to harness the power of these machines for performing design, uncertainty
quantification, and other systems analyses, parallel algorithms are needed which are scalable to thousands of
processors.

DAKOTA supports a total of three tiers of scheduling and four levels of parallelism which, in combination, can
minimize efficiency losses and achieve near linear scaling on MP computers. The four levels are:

1. concurrent iterators within a strategy (scheduling performed by DAKOTA)

2. concurrent function evaluations within each iterator (scheduling performed by DAKOTA)

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

17.3. MULTILEVEL PARALLELISM 229

(a) Relative speedup. (b) Relative efficiency.

Figure 17.3: Fixed-size scaling results for three levels of parallelism.

3. concurrent analyses within each function evaluation (scheduling performed by DAKOTA)

4. multiprocessor analyses (work distributed by a parallel analysis code)

for which the first two are classified as algorithmic coarse-grained parallelism, the third is function evaluation
coarse-grained parallelism, and the fourth is function evaluation fine-grained parallelism (see Section17.1.1).
Algorithmic fine-grained parallelism is not currently supported, although the development of large-scale parallel
SAND techniques is a current research direction [6].

A particular application may support one or more of these parallelism types, and DAKOTA provides for conve-
nient selection and combination of each of the supported levels. If multiple types of parallelism can be exploited,
then the question may arise as to how the amount of parallelism at each level should be selected so as to maximize
the overall parallel efficiency of the study. For performance analysis of multilevel parallelism formulations and
detailed discussion of these issues, refer to [35]. In many cases,the user may simply employ DAKOTA’s automatic
parallelism configuration facilities,which implement the recommendations from the aforementioned paper.

Figure17.3shows typical fixed-size scaling performance using a modified version of the extendedtext book
problem (see Section21.1). Three levels of parallelism (concurrent evaluations within an iterator, concurrent anal-
yses within each evaluation, and multiprocessor analyses) are exercised. Despite the use of a fixed problem size
and the presence of some idleness within the scheduling at multiple levels, the efficiency is still reasonably high2.
Greater efficiencies are obtainable for scaled speedup studies (or for larger problems in fixed-size studies) and
for problems optimized for minimal scheduler idleness (by, e.g., managing all concurrency in as few scheduling
levels as possible). Note that speedup and efficiency are measured relative to the case of a single instance of a mul-
tiprocessor analysis, since it was desired to investigate the effectiveness of the DAKOTA schedulers independent
from the efficiency of the parallel analysis.

2Note that overhead is reduced in these scaling studies by deactivating the evaluation cache and restart file logging.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

230 CHAPTER 17. PARALLEL COMPUTING

17.3.1 Asynchronous Local Parallelism

In most cases, the use of asynchronous local parallelism is the termination point for multilevel parallelism, in
that any level of parallelism lower than an asynchronous local level will be serialized. The exception to this rule
is reforking of forked processes for concurrent analyses within forked evaluations. In this case, a new process is
created using fork for one of several concurrent evaluations; however, the new process is not replaced immediately
using exec. Rather, the new process is reforked to create additional child processes for executing concurrent
analyses within each concurrent evaluation process. This capability is not supported by system calls and provides
one of the key advantages to using fork over system (see Section12.3.4).

17.3.2 Message Passing Parallelism

Partitioning of levels

DAKOTA uses MPI communicators to identify groups of processors. The globalMPI COMMWORLDcommuni-
cator provides the total set of processors allocated to the DAKOTA run.MPI COMMWORLDcan be partitioned
into new intra-communicators which each define a set of processors to be used for a multiprocessor server. Each
of these servers may be further partitioned to nest one level of parallelism within the next. At the lowest paral-
lelism level, these intra-communicators can be passed into a simulation for use as the simulation’s computational
context, provided that the simulation has been designed, or can be modified, to be modular on a communi-
cator (i.e., it does not assume ownership ofMPI COMMWORLD). New intra-communicators are created with
the MPI Commsplit routine, and in order to send messages between these intra-communicators, new inter-
communicators are created with calls toMPI Intercomm create . To minimize overhead, DAKOTA creates
new intra- and inter-communicators only when the parent communicator provides insufficient context for the
scheduling at a particular level. In addition, multiple parallel configurations (containing a set of communicator
partitions) can be allocated for use in studies with multiple iterators and models (e.g., 16 servers of 64 proces-
sors each could be used for iteration on a lower fidelity model, followed by two servers of 512 processors each
for subsequent iteration on a higher fidelity model). Each of the parallel configurations are allocated at object
construction time and are reported at the beginning of the DAKOTA output.

Each tier within DAKOTA’s nested parallelism hierarchy can use the dedicated master and peer partition ap-
proaches described in Section17.2.2. To recursively partition the subcommunicators of Figure17.2, COMM1/2/3
in the dedicated master or peer partition case would be further subdivided using the appropriate partitioning model
for the next lower level of parallelism.

Scheduling within levels

Figure 17.4: Recursive partitioning for
nested parallelism.

DAKOTA is designed to allow the freedom to configure each
parallelism level with either the dedicated master partition/self-
scheduling combination or the peer partition/static scheduling com-
bination. In addition, certain external libraries may provide addi-
tional options (e.g., PICO supports distributed scheduling in peer
partitions). As an example, Figure17.4 shows a case in which
a branch and bound strategy employs peer partition/distributed
scheduling at level 1, each optimizer partition employs concurrent
function evaluations in a dedicated master partition/self-scheduling
model at level 2, and each function evaluation partition employs con-
current multiprocessor analyses in a peer partition/static scheduling

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

17.4. CAPABILITY SUMMARY 231

model at level 3. In this case,MPI COMMWORLDis subdivided
into optCOMM1/2/3/.../ τ1, eachoptCOMMis further subdi-
vided intoevalCOMM0 (master) andevalCOMM1/2/3/.../ τ2
(slaves), and each slaveevalCOMM is further subdivided into
analCOMM1/2/3/.../ τ3. Logic for selection ofτi is discussed
in [35].

17.3.3 Hybrid Parallelism

Hybrid parallelism approaches can take several forms when used in the multilevel parallel context. A concep-
tual boundary can be considered to exist for which all parallelism above the boundary is managed internally
using message-passing and all parallelism below the boundary is managed externally using asynchronous local
approaches. Hybrid parallelism approaches can then be categorized based on whether this boundary between
internal and external management occurs within a parallelism level (intra-level) or between two parallelism levels
(inter-level). In the intra-level case, the jobs for the parallelism level containing the boundary are scheduled using
a hybrid scheduler, in which a capacity multiplier is used for the number of jobs to assign to each server. Each
server is then responsible for concurrently executing its capacity of jobs using an asynchronous local approach. In
the inter-level case, one level of parallelism manages its parallelism internally using a message-passing approach
and the next lower level of parallelism manages its parallelism externally using an asynchronous local approach.
That is, the jobs for the higher level of parallelism are scheduled using a standard message-passing scheduler,
in which a single job is assigned to each server. However, each of these jobs has multiple components, as man-
aged by the next lower level of parallelism, and each server is responsible for executing these sub-components
concurrently using an asynchronous local approach.

For example, consider a multiprocessor DAKOTA run which involves an iterator scheduling a set of concurrent
function evaluations across a cluster of SMPs. A hybrid parallelism approach will be applied in which message-
passing parallelism is used between SMPs and asynchronous local parallelism is used within each SMP. In the
hybrid intra-level case, multiple function evaluations would be scheduled to each SMP, as dictated by the capacity
of the SMPs, and each SMP would manage its own set of concurrent function evaluations using an asynchronous
local approach. Any lower levels of parallelism would be serialized. In the hybrid inter-level case, the function
evaluations would be scheduled one per SMP, and the analysis components within each of these evaluations
would be executed concurrently using asynchronous local approaches within the SMP. Thus, the distinction can
be viewed as whether the concurrent jobs on each server in Figure17.1c reflect the same level of parallelism
as that being scheduled by the master (intra-level) or one level of parallelism below that being scheduled by the
master (inter-level).

17.4 Capability Summary

Table17.1shows a matrix of the supported job management approaches for each of the parallelism levels, with
supported simulation interfaces and synchronization approaches shown in parentheses. The concurrent iterator
and multiprocessor analysis parallelism levels can only be managed with message-passing approaches. In the for-
mer case, this is due to the fact that a separate process or thread for an iterator is not currently supported. The latter
case reflects a finer point on the definition of external parallelism management. While a multiprocessor analysis
can most certainly be launched (e.g., usingmpirun /yod) from one of DAKOTA’s analysis drivers, resulting in a
parallel analysis external to DAKOTA (which is consistent with asynchronous local and hybrid approaches), this
parallelism is not visible to DAKOTA and therefore does not qualify as parallelism that DAKOTA manages (and
therefore is not included in Table17.1). The concurrent evaluation and analysis levels can be managed either with
message-passing, asynchronous local, or hybrid techniques, with the exceptions that the direct interface does not

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

232 CHAPTER 17. PARALLEL COMPUTING

Table 17.1: Support of job management approaches within parallelism levels. Shown in parentheses are supported
simulation interfaces and supported synchronization approaches.

Parallelism Level Asynchronous Local Message Passing Hybrid

concurrent iterators X
within a strategy (blocking only)

concurrent function evaluations X X X
within an iterator (system, fork) (system, fork, direct) (system, fork)

(blocking, nonblocking) (blocking only) (blocking only)
concurrent analyses X X X

within a function evaluation (fork only) (system, fork, direct) (fork only)
(blocking only) (blocking only) (blocking only)

fine-grained parallel analysis X

support asynchronous operations (asynchronous local or hybrid) at either of these levels and the system call in-
terface does not support asynchronous operations (asynchronous local or hybrid) at the concurrent analysis level.
The direct interface restrictions are present since multithreading in not yet supported and the system call inter-
face restrictions result from the inability to manage concurrent analyses within a nonblocking function evaluation
system call. Finally, nonblocking synchronization is only currently supported for asynchronous local parallelism
at the concurrent function evaluation level. In time, message passing and hybrid parallelism approaches will also
support nonblocking synchronization at this level.

17.5 Running a Parallel DAKOTA Job

Section17.2 provides a few examples of serial and parallel execution of DAKOTA using asynchronous local,
message passing, and hybrid approaches to single-level parallelism. The following sections provides a more
complete discussion of the parallel execution syntax and available specification controls.

17.5.1 Single-processor execution

The command for running DAKOTA on a single-processor and exploiting asynchronous local parallelism is the
same as for running DAKOTA on a single-processor for a serial study, e.g.:

dakota -i dakota.in > dakota.out

See Section2.1.5for additional information on single-processor command syntax.

17.5.2 Multiprocessor execution

Running a DAKOTA job on multiple processors requires the use of an executable loading facility such asmpirun ,
mpiexec , poe , oryod . On a network of workstations, thempirun script is commonly used to initiate a parallel
DAKOTA job, e.g.:

mpirun -np 12 dakota -i dakota.in > dakota.out
mpirun -machinefile machines -np 12 dakota -i dakota.in > dakota.out

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

17.6. SPECIFYING PARALLELISM 233

where both examples specify the use of 12 processors, the former selecting them from a default system resources
file and the latter specifying particular machines in a machine file (see [53] for details).

On a massively parallel computer such as ASCI Red, similar facilities are available from the Cougar operating
system via theyod executable loading facility:

yod -sz 512 dakota -i dakota.in > dakota.out

In each of these cases, MPI command line arguments are used by MPI (extracted first in the call toMPI Init)
and DAKOTA command line arguments are used by DAKOTA (extracted second by DAKOTA’s command line
handler). An issue that can arise with these command line arguments is that the mpirun script distributed with
MPICH has been observed to have problems with certain file path specifications (e.g., a relative path such as
“ ../some file ”). These path problems are most easily resolved by using local linkage (all referenced files or
soft links to these files appear in the same directory).

Finally, when running on computer resources that employ NQS/PBS batch schedulers, the single-processor
dakota command syntax or the multiprocessormpirun command syntax might be contained within an ex-
ecutable script file which is submitted to the batch queue. For example, on Cplant, the command

qsub -l size=512 run_dakota

could be submitted to the PBS queue for execution. On ASCI Red, the NQS syntax is similar:

qsub -q snl -lP 512 -lT 6:00:00 run_dakota

These commands allocate 512 compute nodes for the study, and execute therun dakota script on a service
node. If this script contains a single-processordakota command, then DAKOTA will execute on a single service
node from which it can launch parallel simulations into the compute nodes using analysis drivers that containyod
commands (anyyod executions occurring at any level underneath therun dakota script are mapped to the 512
compute node allocation). If the script submitted toqsub contains a multiprocessormpirun command, then
DAKOTA will execute across multiple service nodes so that it can spread the application load in either a message-
passing or hybrid parallelism approach. Again, analysis drivers containingyod commands would be responsible
for utilizing the 512 compute nodes. And, finally, if the script submitted toqsub contains ayod of thedakota
executable, then DAKOTA will execute directly on the compute nodes and manage all of the parallelism internally
(note that ayod of this type without aqsub would be mapped to the interactive partition, rather than to the batch
partition).

Not all supercomputers employ the same model for service/compute partitions or provide the same support for
tiling of concurrent multiprocessor simulations within a single NQS/PBS allocation. For this reason, templates for
parallel job configuration are being catalogued within/Dakota/Applications (in the software distributions)
that are intended to provide guidance for individual machine idiosyncrasies.

17.6 Specifying Parallelism

Given an allotment of processors, DAKOTA contains logic based on the theoretical work in [35] to automati-
cally determine an efficient parallel configuration, consisting of partitioning and scheduling selections for each
of the parallelism levels. This logic accounts for problem size, the concurrency supported by particular iterative
algorithms, and any user inputs or overrides. The following points are important components of the automatic
configuration logic which can be helpful in estimating the total number of processors to allocate and in selecting
configuration overrides:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

234 CHAPTER 17. PARALLEL COMPUTING

• If the capacity of the servers in a peer configuration is sufficient to schedule all jobs in one pass, then
a peer partition and static schedule will be selected. If this capacity is not sufficient, then a dedicated-
master partition and dynamic schedule will be used. These selections can be overridden with self/static
scheduling request specifications for the concurrent iterator, evaluation, and analysis parallelism levels. For
example, if it is known that processor speeds and job durations have little variability, then overriding the
automatic configuration with a static schedule request could eliminate the unnecessary loss of a processor
to scheduling.

• With the exception of the concurrent-iterator parallelism level (iterator executions tend to have high vari-
ability in duration), concurrency is pushed up. That is, available processors will be assigned to concurrency
at the higher parallelism levels first. If more processors are available than needed for concurrency at a level,
then the server size is increased to support concurrency in the next lower level of parallelism. This process
is continued until all available processors have been assigned. These assignments can be overridden with a
servers specification for the concurrent iterator, evaluation, and analysis parallelism levels and with a pro-
cessors per analysis specification for the multiprocessor analysis parallelism level. For example, if it is de-
sired to parallelize concurrent analyses within each function evaluation, then anevaluation servers
= 1 override would serialize the concurrent function evaluations level and assure processor availability for
concurrent analyses.

In the following sections, the user inputs and overrides are described, followed by specification examples for
single and multi-processor DAKOTA executions.

17.6.1 The interface specification

Specifying parallelism within an interface can involve the use of theasynchronous , evaluation concurrency ,
andanalysis concurrency keywords to specify concurrency local to a processor (i.e., asynchronous local
parallelism). Thisasynchronous specification has dual uses:

• When running DAKOTA on a single-processor, theasynchronous keyword specifies the use of asyn-
chronous invocations local to the processor (these jobs then rely on external means to be allocated to other
processors). The default behavior is to simultaneously launch all function evaluations available from the
iterator as well as all available analyses within each function evaluation. In some cases, the default behavior
can overload a machine or violate a usage policy, resulting in the need to limit the number of concurrent
jobs using theevaluation concurrency andanalysis concurrency specifications.

• When executing DAKOTA across multiple processors and managing jobs with a message-passing scheduler,
theasynchronous keyword specifies the use of asynchronous invocations local to each server processor,
resulting in a hybrid parallelism approach (see Section17.2.3). In this case, the default behavior is one
job per server, which must be overridden with anevaluation concurrency specification and/or an
analysis concurrency specification. When a hybrid parallelism approach is specified, the capacity
of the servers (used in the automatic configuration logic) is defined as the number of servers times the
number of asynchronous jobs per server.

In addition,evaluation servers , evaluation self scheduling , andevaluation static scheduling
keywords can be used to override the automatic parallelism configuration for concurrent function evaluations;
analysis servers , analysis self scheduling , andanalysis static scheduling keywords
can be used to override the automatic parallelism configuration for concurrent analyses; and theprocessors per analysis
keyword can be used to override the automatic parallelism configuration for the size of multiprocessor analyses
used in a direct function simulation interface. Each of these keywords appears as part of the interface commands
specification in the DAKOTA Reference Manual [29].

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

17.6. SPECIFYING PARALLELISM 235

17.6.2 The strategy specification

To specify concurrency in iterator executions, theiterator servers , iterator self scheduling ,
anditerator static scheduling keywords are used to override the automatic parallelism configuration.
See the strategy commands specification in the DAKOTA Reference Manual [29] for additional information.

17.6.3 Single-processor DAKOTA specification

Specifying a single-processor DAKOTA job that exploits parallelism through asynchronous local approaches (see
Figure17.1a) requires inclusion of theasynchronous keyword in the interface specification. Once the input
file is defined, single-processor DAKOTA jobs are executed using the command syntax described previously in
Section17.5.1.

Example 1

For example, the following specification runs an NPSOL optimization which will perform asynchronous finite
differencing:

method, \
npsol_sqp

variables, \
continuous_design = 5 \

cdv_initial_point 0.2 0.05 0.08 0.2 0.2 \
cdv_lower_bounds 0.15 0.02 0.05 0.1 0.1 \
cdv_upper_bounds 2.0 2.0 2.0 2.0 2.0

interface, \
system, \

asynchronous \
analysis_drivers = ’text_book’

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
numerical_gradients \

interval_type central \
method_source dakota \
fd_gradient_step_size = 1.e-4 \

no_hessians

Note thatmethod source dakota selects DAKOTA’s internal finite differencing routine so that the concur-
rency in finite difference offsets can be exploited. In this case, central differencing has been selected and 11
function evaluations (one at the current point plus two offsets in each of five variables) can be performed simul-
taneously for each NPSOL response request. These 11 evaluations will be launched with system calls in the
background and presumably assigned to additional processors through the operating system of a multiprocessor
compute server or other comparable method. The concurrency specification may be included if it is necessary to
limit the maximum number of simultaneous evaluations. For example, if a maximum of six compute processors
were available, the command

evaluation_concurrency = 6 \

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

236 CHAPTER 17. PARALLEL COMPUTING

could be added to theasynchronous specification within theinterface keyword from the preceding ex-
ample.

Example 2

If, in addition, multiple analyses can be executed concurrently within a function evaluation (e.g., from multi-
ple load cases or disciplinary analyses that must be evaluated to compute the response data set), then an input
specification similar to the following could be used:

method, \
npsol_sqp

variables, \
continuous_design = 5 \

cdv_initial_point 0.2 0.05 0.08 0.2 0.2 \
cdv_lower_bounds 0.15 0.02 0.05 0.1 0.1 \
cdv_upper_bounds 2.0 2.0 2.0 2.0 2.0

interface, \
fork \

asynchronous \
evaluation_concurrency = 6 \
analysis_concurrency = 3 \

analysis_drivers = ‘text_book1’ ‘text_book2’ ‘text_book3’

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
numerical_gradients \

method_source dakota \
interval_type central \
fd_gradient_step_size = 1.e-4 \

no_hessians

In this case, the default concurrency with just anasynchronous specification would be all 11 function evalua-
tions and all 3 analyses, which can be limited by theevaluation concurrency andanalysis concurrency
specifications. The input file above limits the function evaluation concurrency, but not the analysis concurrency (a
specification of 3 is the default in this case and could be omitted). Changing the input toevaluation concurrency
= 1 would serialize the function evaluations, and changing the input toanalysis concurrency = 1 would
serialize the analyses.

17.6.4 Multiprocessor DAKOTA specification

In multiprocessor executions, server evaluations are synchronous (Figure17.1b) by default and theasynchronous
keyword is only used if a hybrid parallelism approach (Figure17.1c) is desired. Multiprocessor DAKOTA jobs
are executed using the command syntax described previously in Section17.5.2.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

17.6. SPECIFYING PARALLELISM 237

Example 3

To run Example 1 using a message-passing approach, theasynchronous keyword would be removed (since
the servers will execute their evaluations synchronously), resulting in the following interface specification:

interface, \
system, \

analysis_drivers = ’text_book’

Running DAKOTA on 4 processors (syntax:mpirun -np 4 dakota -i dakota.in) would result in the
following parallel configuration report from the DAKOTA output:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 4 peer/static
concurrent evaluations 3 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

The dedicated master partition and self-scheduling algorithm are automatically selected for the concurrent eval-
uations parallelism level since the number of function evaluations (11) is greater than the maximum capacity of
the servers (4). Since one of the processors is dedicated to being the master, only 3 processors are available for
computation and the 11 evaluations can be completed in approximately 4 passes through the servers. If it is known
that there is little variability in evaluation duration, then this logic could be overridden to use a static schedule
through use of theevaluation static scheduling specification:

interface, \
system, \

evaluation_static_scheduling \
analysis_drivers = ’text_book’

Running DAKOTA again on 4 processors (syntax:mpirun -np 4 dakota -i dakota.in) would now
result in this parallel configuration report:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 4 peer/static
concurrent evaluations 4 1 peer/static
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

238 CHAPTER 17. PARALLEL COMPUTING

Now the 11 jobs will be statically distributed among 4 peer servers, since the processor previously dedicated to
scheduling has been converted to a compute server. This could be more efficient if the evaluation durations are
sufficiently similar, but there is no mechanism to adapt to heterogeneity in processor speeds or simulation expense.

As a related example, consider the case where each of the workstations used in the parallel execution has multiple
processors. In this case, a hybrid parallelism approach which combines message-passing parallelism with asyn-
chronous local parallelism (see Figure17.1c) would be a good choice. To specify hybrid parallelism, one uses the
sameasynchronous specification as was used for the single-processor examples, e.g.:

interface, \
system \

asynchronous evaluation_concurrency = 3 \
analysis_drivers = ‘text_book’

With 3 function evaluations concurrent on each server, the capacity of a 4 processor DAKOTA execution (syntax:
mpirun -np 4 dakota -i dakota.in) has increased to 12 evaluations. Since all 11 jobs can now be
scheduled in a single pass, a static schedule is automatically selected (without any override request):

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 4 peer/static
concurrent evaluations 4 1 peer/static
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

Example 4

To run Example 2 using a message-passing approach, theasynchronous specification is again removed:

interface, \
fork \

analysis_drivers = ‘text_book1’ ‘text_book2’ ‘text_book3’

Running this example on 6 processors (syntax:mpirun -np 6 dakota -i dakota.in) would result in
the following parallel configuration report:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 6 peer/static
concurrent evaluations 5 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

17.6. SPECIFYING PARALLELISM 239

Total parallelism levels = 1

in which all of the processors have been assigned to support evaluation concurrency due to the “push up” automatic
configuration logic. Note that the default configuration could be a poor choice in this case, since 11 jobs scheduled
through 5 servers will likely have significant idleness towards the end of the scheduling. To assign some of the
available processors to the concurrent analysis level, the following input could be used:

interface, \
fork \

analysis_drivers = ‘text_book1’ ‘text_book2’ ‘text_book3’ \
evaluation_static_scheduling \
evaluation_servers = 2

which results in the following 2-level parallel configuration:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 6 peer/static
concurrent evaluations 2 3 peer/static
concurrent analyses 3 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 2

The six processors available have been split into two evaluation servers of three processors each, where the three
processors in each evaluation server manage the three analyses, one per processor.

Next, consider the following 3-level parallel case, in whichtext book1 , text book2 , and text book3
from the previous examples now execute on two processors each. In this case, theprocessors per analysis
keyword is added and thefork interface is changed to adirect interface since the fine-grained parallelism of
the three simulations is managed internally:

interface, \
direct \

analysis_drivers = ‘text_book1’ ‘text_book2’ ‘text_book3’ \
evaluation_static_scheduling \
evaluation_servers = 2 \
processors_per_analysis = 2

This results in the following parallel configuration for a 12 processor DAKOTA run
(syntax:mpirun -np 12 dakota -i dakota.in):

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 12 peer/static

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

240 CHAPTER 17. PARALLEL COMPUTING

concurrent evaluations 2 6 peer/static
concurrent analyses 3 2 peer/static
multiprocessor analysis 2 N/A N/A

Total parallelism levels = 3

An important point to recognize is that, since each of the parallel configuration inputs has been tied to the inter-
face specification up to this point, these parallel configurations can be reallocated for each interface in a multi-
iterator/multi-model strategy. For example, a DAKOTA execution on 40 processors might involve the following
two interface specifications:

interface, \
direct, \

id_interface = ’COARSE’ \
analysis_driver = ’sim1’ \
processors_per_analysis = 5

interface, \
direct, \

id_interface = ’FINE’ \
analysis_driver = ’sim2’ \
processors_per_analysis = 10

for which the coarse model would employ 8 servers of 5 processors each and the fine model would employ 4
servers of 10 processors each.

Next, consider the following 4-level parallel case that employs the Pareto set optimization strategy. In this case,
iterator servers anditerator static scheduling requests are included in the strategy specifica-
tion:

strategy, \
pareto_set \

iterator_servers = 2 \
iterator_static_scheduling \
opt_method_pointer = ’NLP’ \
random_weight_sets = 4

Adding this strategy specification to the input file from the previous 12 processor example results in the following
parallel configuration for a 24 processor DAKOTA run
(syntax:mpirun -np 24 dakota -i dakota.in):

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 2 12 peer/static
concurrent evaluations 2 6 peer/static
concurrent analyses 3 2 peer/static
multiprocessor analysis 2 N/A N/A

Total parallelism levels = 4

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

17.6. SPECIFYING PARALLELISM 241

Example 5

As a final example, consider a multi-start optimization conducted on 384 processors of ASCI Red. A job of this
size must be submitted to the batch queue, using syntax similar to:

qsub -q snl -lP 384 -lT 6:00:00 run_dakota

where therun dakota script appears as

#!/bin/sh
cd /scratch/<some_workdir>
yod -sz 384 dakota -i dakota.in > dakota.out

and the strategy and interface specifications from thedakota.in input file appear as

strategy, \
multi_start \

method_pointer = ’CPS’ \
iterator_servers = 8 \
random_starts = 8

interface, \
direct, \

analysis_drivers = ’text_book1’ ’text_book2’ ’text_book3’ \
evaluation_servers = 8 \
evaluation_static_scheduling \
processors_per_analysis = 2

The resulting parallel configuration is reported as

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 8 48 peer/static
concurrent evaluations 8 6 peer/static
concurrent analyses 3 2 peer/static
multiprocessor analysis 2 N/A N/A

Total parallelism levels = 4

Since the concurrency at each of the nested levels has a multiplicative effect on the number of processors that can
be utilized, it is easy to see how large numbers of processors can be put to effective use in reducing the time to
reach a solution, even when, as in this example, the concurrency per level is relatively low.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

242 CHAPTER 17. PARALLEL COMPUTING

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 18

DAKOTA Usage Guidelines

18.1 Problem Exploration

The first objective in an analysis is to characterize the problem so that appropriate algorithms can be chosen. In
the case of optimization, typical questions that should be addressed include: Are the design variables continuous,
discrete, or mixed? Is the problem constrained or unconstrained? How expensive are the response functions to
evaluate? Will the response functions behave smoothly as the design variables change or will there be nonsmooth-
ness and/or discontinuities? Are the response functions likely to be multimodal, such that global optimization may
be warranted? Is analytic gradient data available, and if not, can I calculate gradients accurately and cheaply? Ad-
ditional questions that are pertinent for characterization of uncertainty quantification problems include: Can I
accurately model the probabilistic distributions of my uncertain variables? Are the response functions relatively
linear? Am I interested in a full random process characterization of the response functions, or just statistical
results?

If there is not sufficient information from the problem description to answer these questions, then additional prob-
lem characterization activities may be warranted. One particularly useful characterization activity that DAKOTA
enables is parameter space exploration through the use of parameter studies and design of experiments methods.
The parameter space can be systematically interrogated to create sufficient information to evaluate the trends in
the response functions and to determine if these trends are noisy or smooth, unimodal or multimodal, relatively
linear or highly nonlinear, etc. In addition, the parameter studies may reveal that one or more of the parameters
do not significantly affect the results and can be removed from the problem formulation. This can yield a poten-
tially large savings in computational expense for the subsequent studies. Refer to Chapters4 and5 for additional
information on parameter studies and design of experiments methods.

18.2 Optimization Method Selection

In selecting an optimization method, important considerations include the type of variables in the problem (contin-
uous, discrete, mixed), whether a global search is needed or a local search is sufficient, and the required constraint
support (unconstrained, bound constrained, nonlinearly constrained). Less obvious, but equally important, con-
siderations include the efficiency of convergence to an optimum (i.e., convergence rate) and the robustness of the
method in the presence of challenging design space features (e.g., nonsmoothness).

Gradient-based optimization methods are highly efficient, with the best convergence rates of all of the optimization

244 CHAPTER 18. DAKOTA USAGE GUIDELINES

methods. If analytic gradient and Hessian information can be provided by an application code, a full Newton
method will provide quadratic convergence rates near the solution. More commonly, only gradient information
is available and a quasi-Newton method is chosen in which the Hessian information is approximated from an
accumulation of gradient data. In this case, superlinear convergence rates can be obtained. These characteristics
make gradient-based optimization methods the methods of choice when the problem is smooth, unimodal, and
well-behaved. However, when the problem exhibits nonsmooth, discontinuous, or multimodal behavior, these
methods can also be the least robust since inaccurate gradients will lead to bad search directions, failed line
searches, and early termination and the presence of multiple minima will be missed.

Thus, for gradient-based optimization, a critical factor is the gradient accuracy. Analytic gradients are ideal,
but are often unavailable. For many engineering applications, a finite difference method will be used by the
optimization algorithm to estimate gradient values. DAKOTA allows the user to select the step size for these
calculations, as well as choose between forward-difference and central-difference algorithms. The finite difference
step size should be selected as small as possible, to allow for local accuracy and convergence, but not so small that
the steps are “in the noise.” This requires an assessment of the local smoothness of the response functions using,
for example, a parameter study method. Central differencing, in general, will produce more reliable gradients
than forward differencing, but at roughly twice the expense.

Nongradient-based methods exhibit much slower convergence rates for finding an optimum, and as a result, tend
to be much more computationally demanding than gradient-based methods. Nongradient local optimization meth-
ods, such as pattern search algorithms, often require from several hundred to a thousand or more function eval-
uations, depending on the number of variables, and nongradient global optimization methods such as genetic
algorithms may require from thousands to tens-of-thousands of function evaluations. Clearly, for nongradient op-
timization studies, the computational cost of the function evaluation must be relatively small in order to obtain an
optimal solution in a reasonable amount of time. In addition, nonlinear constraint support in nongradient methods
is an open area of research and, while supported by many nongradient methods in DAKOTA, is not as refined
as constraint support in gradient-based methods. However, nongradient methods can be more robust and more
inherently parallel than gradient-based approaches. They can be applied in situations were gradient calculations
are too expensive or unreliable. In addition, some nongradient-based methods can be used for global optimization
which gradient-based techniques, by themselves, cannot. For these reasons, nongradient-based methods deserve
consideration when the problem may be nonsmooth, multimodal, or poorly behaved.

An approach which attempts to bring the efficiency of gradient-based optimization methods to nonsmooth or
poorly behaved problems is the surrogate-based optimization (SBO) strategy. This technique can smooth noisy
or discontinuous response results through use of a data fit surrogate model (e.g., a quadratic polynomial) and
then optimize on the smooth surrogate using efficient gradient-based techniques. Section9.6 provides further
information on this approach. In addition, the multilevel hybrid and multistart optimization strategies can address
a similar goal of bringing the efficiency of gradient-based optimization methods to global optimization problems.
In the former case, a global optimization method can be used for a few cycles to locate promising regions and
then local gradient-based optimization is used to efficiently converge on one or more optima. In the latter case,
a stratification technique is used to disperse a series of local gradient-based optimization runs through parameter
space. Section9.2and Section9.3provide more information on these approaches.

Table18.1provides a convenient reference for choosing an optimization method or strategy to match the charac-
teristics of the user’s problem. With respect to constraint support, it should be understood that the methods with
more advanced constraint support are also applicable to the lower constraint support levels; they are listed only at
their highest level of constraint support for brevity.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

18.2. OPTIMIZATION METHOD SELECTION 245

Table 18.1: Guidelines for optimization and nonlinear least squares method selection.

Variable Function Solution Constraints Applicable Methods
Type Surface Type

continuous smooth local opt unconstrained optppcg
bound constrained dot bfgs, dotfrcg, conminfrcg

nonlinearly npsol sqp, nlpqlsqp, dotmmfd,
constrained dot slp, dotsqp, conminmfd,

optppnewton, optppq newton,
optpp fd newton

local least bound constrained nl2sol
squares

local least nonlinearly nlssol sqp, optppg newton
squares constrained
local nonlinearly weighted sums (one soln),

multiobjective constrained paretoset strategy (multiple solns)
global opt nonlinearly multi level strategy

constrained multi start strategy
nonsmooth local opt bound constrained optpppds

nonlinearly coliny apps, colinypatternsearch,
constrained coliny solis wets, colinycobyla

local/global opt nonlinearly surrogatebasedopt strategy
constrained

global opt nonlinearly soga, colinyea, colinydirect
constrained

global nonlinearly moga
multiobjective constrained

discrete n/a global opt nonlinearly soga, colinyea
categorical constrained

global nonlinearly moga
multiobjective constrained

discrete n/a local opt nonlinearly branchandbound strategy
noncategorical constrained

mixed nonsmooth global opt nonlinearly soga, colinyea
categorical constrained

global nonlinearly moga
multiobjective constrained

mixed smooth local opt nonlinearly branchandbound strategy
noncategorical constrained

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

246 CHAPTER 18. DAKOTA USAGE GUIDELINES

18.3 UQ Method Selection

The need for computationally efficient methods is further amplified in the case of the quantification of uncertainty
in computational simulations. Sampling-based methods are the most robust uncertainty techniques available,
are applicable to almost all simulations, and possess rigorous error bounds; consequently, they should be used
whenever the function is relatively inexpensive to compute. However, in the case of terascale computational
simulations, the number of function evaluations required by traditional techniques such as Monte Carlo and Latin
hypercube sampling (LHS) quickly becomes prohibitive. One way to alleviate this problem is to employ more
advanced sampling strategies, such as Quasi-Monte Carlo (QMC) sampling, importance sampling (IS), or Markov
Chain Monte Carlo (MCMC) sampling, and these techniques are currently under investigation.

Alternatively, one can apply the traditional sampling techniques to a surrogate function approximating the ex-
pensive computational simulation. However, if this approach is selected, the user should be aware that it is very
difficult to assess the accuracy of the results obtained. Unlike in the case of SBO (see Section9.6), there is no
simple pointwise calculation to verify the accuracy of the approximate results. This is due to the functional nature
of uncertainty quantification, i.e. the accuracy of the surrogate over the entire parameter space needs to be con-
sidered, not just around a candidate optimum as in the case of SBO. This issue especially manifests itself when
trying to estimate low probability events such as the catastrophic failure of a system.

Another class of UQ methods known as reliability methods (e.g., MV, AMV, AMV2, AMV+, AMV 2+, TANA,
FORM, SORM) are more computationally efficient in general than the sampling methods and are effective when
applied to reasonably well-behaved response functions, such as linear or mildly nonlinear functions. They can
be used to provide qualitative sensitivity information concerning which uncertain variables are important (with
relatively few function evaluations), or compute full cumulative or complementary cumulative response functions
(with additional computational effort). Since they rely on gradient calculations to compute local optima (most
probable points of failure), issues with nonsmooth, discontinuous, and multimodal response functions are relevant
concerns. In addition, even if the MPP is calculated successfully, first-order and second-order integrations may
fail to accurately capture the shape of the failure domain. Thus these methods should be used with some care and
their accuracy should be verified whenever possible.

The next class of UQ methods available in DAKOTA are stochastic finite elements techniques using polynomial
chaos expansions, which are general purpose techniques provided that the response functions possess finite second
order moments. Further, these methods approximate the full random process/field rather than just approximating
statistics such as mean and standard deviation. This class of methods parallels traditional variational methods in
mechanics; in that vein, efforts are underway to compute rigorous error bounds of the approximations produced
by the methods. Another strength of the these methods is their potential use in a multiphysics environment as a
means to propagate the uncertainty through a series of simulations while retaining as much information as possible
at each stage of the analysis. On the other hand, these methods currently rely on the use of traditional sampling
techniques in the construction of the approximations; consequently, they can be computationally expensive in the
case of terascale applications.

The final class of UQ methods available in DAKOTA are focused on epistemic uncertainties, or uncertainties
resulting from a lack of knowledge. In these problems, the use of methods based on probability theory can be
somewhat tenuous. One approach to handling epistemic uncertainties is Dempster-Shafer theory of evidence
(DAKOTA methodnond evidence). Another method, which supports a mixture of epistemic and aleatoric
uncertainties, is second-order probability used nested models (see Section10.4). In this method, an outer epis-
temic level selects realizations of uncertain variable distribution parameters from intervals. These realizations
define the probability distributions for an inner aleatoric level performing probabilistic analyses. In combination,
the study generates a family of CDF/CCDF respresentations which can be represented as a “horse tail” plot.

The recommendations for UQ methods are summarized in Table18.2.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

18.4. PARAMETER STUDY/DOE/DACE/SAMPLING METHOD SELECTION 247

Table 18.2: Guidelines for UQ method selection.

Method Desired Problem Applicable Methods
Classification Characteristics

Sampling response functions are nondsampling (Monte Carlo or LHS)
relatively inexpensive

Reliability smooth, unimodal nond reliability (MV, AMV, AMV 2,
response functions AMV+, AMV 2+, TANA, FORM, SORM)

Stochastic finite representation of full nondpolynomial chaos
elements random variable/process/

field is desired
Epistemic some uncertainties are nondevidence, 2nd-order probability

UQ methods poorly characterized using nested models

18.4 Parameter Study/DOE/DACE/Sampling Method Selection

Parameter studies, classical design of experiments (DOE), design/analysis of computer experiments (DACE),
and sampling methods share the purpose of exploring the parameter space. If directed studies with a defined
structure are desired, then parameter study methods (see Chapter4) are recommended. For example, a quick
assessment of the smoothness of a response function is best addressed with a vector or centered parameter study.
Also, performing local sensitivity analysis is best addressed with these methods. If, however, a global space-
filling set of samples is desired, then the DOE, DACE, and sampling methods are recommended (see Chapter5).
These techniques are useful for scatter plot and variance analysis as well as surrogate model construction. The
distinction between DOE and DACE methods is that the former are intended for physical experiments containing
an element of nonrepeatability (and therefore tend to place samples at the extreme parameter vertices), whereas
the latter are intended for repeatable computer experiments and are more space-filling in nature. The distinction
between DOE/DACE and sampling is drawn based on the distributions of the parameters. DOE/DACE methods
typically assume uniform distributions, whereas the sampling approaches in DAKOTA support a broad range of
probability distributions. To usenond sampling in a design of experiments mode (as opposed to an uncertainty
quantification mode), theall variables flag should be included in the method specification of the DAKOTA
input file.

These method selection recommendations are summarized in Table18.3.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

248 CHAPTER 18. DAKOTA USAGE GUIDELINES

Table 18.3: Guidelines for selection of parameter study, DOE, DACE, and sampling methods.

Method Applications Applicable Methods
Classification

parameter study sensitivity analysis, centeredparameterstudy,
directed parameter space list parameterstudy,

investigations multidim parameterstudy,
vectorparameterstudy

classical design physical experiments dace (boxbehnken,
of experiments (parameters are centralcomposite)

uniformly distributed)

design of computer variance analysis, dace (grid, random, oas, lhs, oalhs),
experiments space filling designs fsu quasimc (halton, hammersley),

(parameters are fsu cvt
uniformly distributed)

sampling space filling designs nondsampling (Monte Carlo or LHS)
(parameters have general with all variables flag
probability distributions)

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 19

Restart Capabilities and Utilities

19.1 Restart Management

DAKOTA was developed for solving problems that require multiple calls to computationally expensive simulation
codes. In some cases you may want to conduct the same optimization, but to a tighter final convergence tolerance.
This would be costly if the entire optimization analysis had to be repeated. Interruptions imposed by computer
usage policies, power outages, and system failures could also result in costly delays. However, DAKOTA auto-
matically records the variable and response data from all function evaluations so that new executions of DAKOTA
can pick up where previous executions left off.

The DAKOTA restart file (e.g.,dakota.rst) is written in a portable binary format. The portability derives
from use of the XDR standard. As shown in Section2.1.5, the primary restart commands for DAKOTA are
-read restart , -write restart , and-stop restart .

To write a restart file using a particular name, the-write restart command line input (may be abbreviated
as-w) is used:

dakota -i dakota.in -write_restart my_restart_file

If no -write restart specification is used, then DAKOTA will still write a restart file, but using the de-
fault namedakota.rst instead of a user-specified name. To turn restart recording off, the user may select
deactivate restart file in the interface specification (refer to the Interface Commands chapter in
the DAKOTA Reference Manual [29] for additional information). This can increase execution speed and reduce
disk storage requirements, but at the expense of a loss in the ability to recover and continue a run that terminates
prematurely. Obviously, this option is not recommended when function evaluations are costly or prone to failure.

To restart DAKOTA from a restart file, the-read restart command line input (may be abbreviated as-r) is
used:

dakota -i dakota.in -read_restart my_restart_file

If no -read restart specification is used, then DAKOTA will not read restart information from any file (i.e.,
the default is no restart processing).

If the -write restart and-read restart specifications identify the same file (including the case where
-write restart is not specified and-read restart identifiesdakota.rst), then new evaluations will

250 CHAPTER 19. RESTART CAPABILITIES AND UTILITIES

be appended to the existing restart file. If the-write restart and-read restart specifications identify
different files, then the evaluations read from the file identified by-read restart are first written to the
-write restart file. Any new evaluations are then appended to the-write restart file. In this way,
restart operations can be chained together indefinitely with the assurance that all of the relevant evaluations are
present in the latest restart file.

To read in only a portion of a restart file, the-stop restart control (may be abbreviated as-s) is used to
specify the number of entries to be read from the database. Note that this integer value corresponds to the restart
record numbers shown with theprint option (see Section19.2.1below), but may differ from the evaluation
numbers used in the previous run if, for example, any duplicates were detected (since these duplicates are not
recorded in the restart file). In the case of a-stop restart specification, it is usually desirable to specify a new
restart file using-write restart so as to remove the records of erroneous or corrupted function evaluations.
For example, to read in the first 50 evaluations fromdakota.rst :

dakota -i dakota.in -r dakota.rst -s 50 -w dakota_new.rst

Thedakota new.rst file will contain the 50 processed evaluations fromdakota.rst as well as any new
evaluations. All evaluations following the 50th in dakota.rst have been removed from the latest restart record.

DAKOTA’s restart algorithm relies on its duplicate detection capabilities. Processing a restart file populates the
list of function evaluations that have been performed. Then, when the study is restarted, it is started from the
beginning (not a “warm” start) and many of the function evaluations requested by the iterator are intercepted
by the duplicate detection code. This approach has the primary advantage of restoring the complete state of
the iteration (including the ability to correctly detect subsequent duplicates) for all iterators and multi-iterator
strategies without the need for iterator-specific restart code. However, the possibility exists for numerical round-
off error to cause a divergence between the evaluations performed in the previous and restarted studies. This has
been extremely rare to date.

19.2 The DAKOTA Restart Utility

The DAKOTA restart utility program provides a variety of facilities for managing restart files from DAKOTA
executions. The executable program name isdakota restart util and it has the following options, as
shown by the usage message returned when executing the utility without any options:

Usage: "dakota_restart_util print <restart_file>"
"dakota_restart_util to_neutral <restart_file> <neutral_file>"
"dakota_restart_util from_neutral <neutral_file> <restart_file>"
"dakota_restart_util to_pdb <restart_file> <pdb_file>"
"dakota_restart_util to_tabular <restart_file> <text_file>"
"dakota_restart_util remove <double> <old_restart_file>

<new_restart_file>"
"dakota_restart_util remove_ids <int_1> ... <int_n> <old_restart_file>

<new_restart_file>"
"dakota_restart_util cat <restart_file_1> ... <restart_file_n>

<new_restart_file>"

Several of these functions involve format conversions. In particular, the binary format used for restart files can
be converted to ASCII text and printed to the screen, converted to and from a neutral file format, converted to a
PDB format for use at Lawrence Livermore National Laboratory, or converted to a tabular format for importing
into 3rd-party graphics programs. In addition, a restart file with corrupted data can be repaired by value or id, and
multiple restart files can be combined to create a master database.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

19.2. THE DAKOTA RESTART UTILITY 251

19.2.1 Print

Theprint option is quite useful for interrogating the contents of a particular restart file, since the binary format
is not convenient for direct inspection. The restart data is printed in full precision, so that exact matching of points
is possible for restarted runs or corrupted data removals. For example, the following command

dakota_restart_util print dakota.rst

results in output similar to the following (from the/Dakota/test/dakota cyl head.in example prob-
lem):

--
Restart record 1 (evaluation id 1):
--

1.8000000000000000e+00 intake_dia
1.0000000000000000e+00 flatness

Active set vector = { 3 3 3 3 }
-2.4355973813420619e+00 obj_fn
-4.7428486677140930e-01 nln_ineq_con_1
-4.5000000000000001e-01 nln_ineq_con_2

1.3971143170299741e-01 nln_ineq_con_3
[-4.3644298963447897e-01 1.4999999999999999e-01] obj_fn gradient
[1.3855136437818300e-01 0.0000000000000000e+00] nln_ineq_con_1 gradient
[0.0000000000000000e+00 1.4999999999999999e-01] nln_ineq_con_2 gradient
[0.0000000000000000e+00 -1.9485571585149869e-01] nln_ineq_con_3 gradient

--
Restart record 2 (evaluation id 2):
--

2.1640000000000001e+00 intake_dia
1.7169994018008317e+00 flatness

Active set vector = { 3 3 3 3 }
-2.4869127192988878e+00 obj_fn

6.9256958799989843e-01 nln_ineq_con_1
-3.4245008972987528e-01 nln_ineq_con_2

8.7142207937157910e-03 nln_ineq_con_3
[-4.3644298963447897e-01 1.4999999999999999e-01] obj_fn gradient
[2.9814239699997572e+01 0.0000000000000000e+00] nln_ineq_con_1 gradient
[0.0000000000000000e+00 1.4999999999999999e-01] nln_ineq_con_2 gradient
[0.0000000000000000e+00 -1.6998301774282701e-01] nln_ineq_con_3 gradient

...<snip>...

Restart file processing completed: 11 evaluations retrieved.

19.2.2 To/From Neutral File Format

A DAKOTA restart file can be converted to a neutral file format using a command like the following:

dakota_restart_util to_neutral dakota.rst dakota.neu

which results in a report similar to the following:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

252 CHAPTER 19. RESTART CAPABILITIES AND UTILITIES

Writing neutral file dakota.neu
Restart file processing completed: 11 evaluations retrieved.

Similarly, a neutral file can be returned to binary format using a command like the following:

dakota_restart_util from_neutral dakota.neu dakota.rst

which results in a report similar to the following:

Reading neutral file dakota.neu
Writing new restart file dakota.rst
Neutral file processing completed: 11 evaluations retrieved.

The contents of the generated neutral file are similar to the following (from the first two records for the/Dakota/test/dakota cyl head.in
example problem):

6 7 2 1.8000000000000000e+00 intake_dia 1.0000000000000000e+00 flatness 0 0 0 0
NULL 4 2 1 0 3 3 3 3 1 2 obj_fn nln_ineq_con_1 nln_ineq_con_2 nln_ineq_con_3

-2.4355973813420619e+00 -4.7428486677140930e-01 -4.5000000000000001e-01
1.3971143170299741e-01 -4.3644298963447897e-01 1.4999999999999999e-01
1.3855136437818300e-01 0.0000000000000000e+00 0.0000000000000000e+00
1.4999999999999999e-01 0.0000000000000000e+00 -1.9485571585149869e-01 1

6 7 2 2.1640000000000001e+00 intake_dia 1.7169994018008317e+00 flatness 0 0 0 0
NULL 4 2 1 0 3 3 3 3 1 2 obj_fn nln_ineq_con_1 nln_ineq_con_2 nln_ineq_con_3

-2.4869127192988878e+00 6.9256958799989843e-01 -3.4245008972987528e-01
8.7142207937157910e-03 -4.3644298963447897e-01 1.4999999999999999e-01
2.9814239699997572e+01 0.0000000000000000e+00 0.0000000000000000e+00
1.4999999999999999e-01 0.0000000000000000e+00 -1.6998301774282701e-01 2

This format is not intended for direct viewing (print should be used for this purpose). Rather, the neutral file
capability has been used in the past for managing portability of restart data across platforms (recent use of the
XDR standard for portable binary formats has eliminated this need) or for advanced repair of restart records (in
cases where the techniques of Section19.2.5were insufficient).

19.2.3 To Tabular Format

Conversion of a binary restart file to a tabular format enables convenient import of this data into 3rd-party post-
processing tools such as Matlab, TECplot, Excel, etc. This facility is nearly identical to thetabular graphics data
option in the DAKOTA input file specification (described in Section15.3), but with two important differences:

1. No function evaluations are suppressed as they are withtabular graphics data (i.e., any internal
finite difference evaluations are included).

2. The conversion can be performed posthumously, i.e., for DAKOTA runs executed previously.

An example command for converting a restart file to tabular format is:

dakota_restart_util to_tabular dakota.rst dakota.m

which results in a report similar to the following:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

19.2. THE DAKOTA RESTART UTILITY 253

Writing tabular text file dakota.m
Restart file processing completed: 10 evaluations tabulated.

The contents of the generated tabular file are similar to the following (from the
/Dakota/test/dakota textbook.in example problem). Note that, while evaluations resulting from nu-
merical derivative offsets would be reported (as described above), derivatives returned as part of the evaluations
are not reported (since they do not readily fit within a compact tabular format):

%eval_id x1 x2 obj_fn nln_ineq_con_1 nln_ineq_con_2
1 0.9 1.1 0.0002 0.26 0.76
2 0.6433962264 0.6962264151 0.0246865569 0.06584549662 0.1630331079
3 0.5310576935 0.5388046558 0.09360081618 0.01261994597 0.02478161031
4 0.612538853 0.6529854907 0.03703861037 0.04871110113 0.1201206246
5 0.5209215947 0.5259311717 0.1031862798 0.00839372202 0.01614279999
6 0.5661606434 0.5886684401 0.06405197568 0.02620365411 0.06345021064
7 0.5083873357 0.510239856 0.1159458957 0.003337755086 0.006151042802
8 0.5001577143 0.5001800249 0.1248312163 6.772666885e-05 0.0001012002012
9 0.5000000547 0.5000000598 0.1249999428 2.485652461e-08 3.238746073e-08

10 0.5 0.5 0.125 2.942091015e-15 3.60822483e-15

19.2.4 Concatenation of Multiple Restart Files

In some instances, it is useful to combine restart files into a single master function evaluation database. For
example, when constructing a data fit surrogate model, data from previous studies can be pulled in and reused to
create a combined data set for the surrogate fit. An example command for concatenating multiple restart files is:

dakota_restart_util cat dakota.rst.1 dakota.rst.2 dakota.rst.3 dakota.rst.all

which results in a report similar to the following:

Writing new restart file dakota.rst.all
dakota.rst.1 processing completed: 10 evaluations retrieved.
dakota.rst.2 processing completed: 110 evaluations retrieved.
dakota.rst.3 processing completed: 65 evaluations retrieved.

The dakota.rst.all database now contains 185 evaluations and can be read in for use in a subsequent
DAKOTA study using the-read restart option to thedakota executable (see Section19.1).

19.2.5 Removal of Corrupted Data

On occasion, a simulation or computer system failure may cause a corruption of the DAKOTA restart file. For
example, a simulation crash may result in failure of a post-processor to retrieve meaningful data. If 0’s (or other
erroneous data) are returned from the user’sanalysis driver , then this bad data will get recorded in the
restart file. If there is a clear demarcation of where corruption initiated (typical in a process with feedback, such
as gradient-based optimization), then use of the-stop restart option for thedakota executable can be
effective in continuing the study from the point immediately prior to the introduction of bad data. If, however,
there are interspersed corruptions throughout the restart database (typical in a process without feedback, such as
sampling), then theremove andremove ids options ofdakota restart util can be useful.

An example of the command syntax for theremove option is:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

254 CHAPTER 19. RESTART CAPABILITIES AND UTILITIES

dakota_restart_util remove 2.e-04 dakota.rst dakota.rst.repaired

which results in a report similar to the following:

Writing new restart file dakota.rst.repaired
Restart repair completed: 65 evaluations retrieved, 2 removed, 63 saved.

where any evaluations indakota.rst having an active response function value that matches2.e-04 within
machine precision are discarded when creatingdakota.rst.repaired .

An example of the command syntax for theremove ids option is:

dakota_restart_util remove_ids 12 15 23 44 57 dakota.rst dakota.rst.repaired

which results in a report similar to the following:

Writing new restart file dakota.rst.repaired
Restart repair completed: 65 evaluations retrieved, 5 removed, 60 saved.

where evaluation ids12 , 15 , 23 , 44 , and57 have been discarded when creatingdakota.rst.repaired .
An important detail is that, unlike the-stop restart option which operates on restart record numbers (see
Section19.1)), theremove ids option operates on evaluation ids. Thus, removal is not necessarily based on the
order of appearance in the restart file. This distinction is important when removing restart records for a run that
contained either asynchronous or duplicate evaluations, since the restart insertion order and evaluation ids may not
correspond in these cases (asynchronous evaluations have ids assigned in the order of job creation but are inserted
in the restart file in the order of job completion, and duplicate evaluations are not recorded which introduces offsets
between evaluation id and record number). This can also be important if removing records from a concatenated
restart file, since the same evaluation id could appear more than once. In this case, all evaluation records with ids
matching theremove ids list will be removed.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 20

Simulation Failure Capturing

DAKOTA provides the capability to manage failures in simulation codes within its system call, fork, and direct
simulation interfaces (see Section12.3for simulation interface descriptions). Failure capturing consists of three
operations: failure detection, failure communication, and failure mitigation.

20.1 Failure detection

Since the symptoms of a simulation failure are highly code and application dependent, it is the user’s responsi-
bility to detect failures within theiranalysis driver , input filter , or output filter . One popular
example of simulation monitoring is to rely on a simulation’s internal detection of errors. In this case, the UNIX
grep utility can be used within a user’s driver/filter script to detect strings in output files which indicate analysis
failure. For example, the following C shell script excerpt

grep ERROR analysis.out > /dev/null
if ($status == 0)

echo "FAIL" > results.out
endif

will pass theif test and communicate simulation failure to DAKOTA if thegrep command finds the string
ERRORanywhere in theanalysis.out file. The /dev/null device file is called the “bit bucket” and the
grep command output is discarded by redirecting it to this destination. The$status shell variable contains
the exit status of the last command executed [3], which is the exit status ofgrep in this case (0 if successful
in finding the error string, nonzero otherwise). For Bourne shells [8], the $? shell variable serves the same
purpose as$status for C shells. In a related approach, if the return code from a simulation can be used directly
for failure detection purposes, then$status or $? could be queried immediately following the simulation
execution using anif test like that shown above.

If the simulation code is not returning error codes or providing direct error diagnostic information, then failure
detection may require monitoring of simulation results for sanity (e.g., is the mesh distorting excessively?) or
potentially monitoring for continued process existence to detect a simulation segmentation fault or core dump.
While this can get complicated, the flexibility of DAKOTA’s interfaces allows for a wide variety of monitoring
approaches.

256 CHAPTER 20. SIMULATION FAILURE CAPTURING

20.2 Failure communication

Once a failure is detected, it must be communicated so that DAKOTA can take the apprpriate corrective action.
The form of this communication depends on the type of simulation interface in use.

In the system call and fork simulation interfaces, a detected simulation failure is communicated to DAKOTA
through the results file. Instead of returning the standard results file data, the string “fail ” should appear at the
beginning of the results file. Any data appearing after the fail string will be ignored. Also, DAKOTA’s detection
of this string is case insensitive, so “FAIL ”, “ Fail ”, etc., are equally valid.

In the direct simulation interface case, a detected simulation failure is communicated to DAKOTA through the
return code provided by the user’sanalysis driver , input filter , or output filter . As shown in
Section16.2.1, the prototype for simulations linked within the direct interface includes an integer return code. This
code has the following meanings: 0 (false) indicates that all is normal and nonzero (true) indicates an exception
(i.e., a simulation failure).

20.3 Failure mitigation

Once the analysis failure has been communicated, DAKOTA will attempt to recover from the failure using one of
the following four mechanisms, as governed by the interface specification in the user’s input file (see the Interface
Commands chapter in the DAKOTA Reference Manual [29] for additional information).

20.3.1 Abort (default)

If the abort option is active (the default), then DAKOTA will terminate upon detecting a failure. Note that if
the problem causing the failure can be corrected, DAKOTA’s restart capability (see Chapter19) can be used to
continue the study.

20.3.2 Retry

If the retry option is specified, then DAKOTA will re-invoke the failed simulation up to the specified number
of retries. If the simulation continues to fail on each of these retries, DAKOTA will terminate. The retry option is
appropriate for those cases in which simulation failures may be resulting from transient computing environment
issues, such as shared disk space, software license access, or networking problems.

20.3.3 Recover

If the recover option is specified, then DAKOTA will not attempt the failed simulation again. Rather, it will
return a “dummy” set of function values as the results of the function evaluation. The dummy function values to
be returned are specified by the user. Any gradient or Hessian data requested in the active set vector will be zero.
This option is appropriate for those cases in which a failed simulation may indicate a region of the design space
to be avoided and the dummy values can be used to return a large objective function or constraint violation which
will discourage an optimizer from further investigating the region.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

20.3. FAILURE MITIGATION 257

20.3.4 Continuation

If the continuation option is specified, then DAKOTA will attempt to step towards the failing “target” simula-
tion from a nearby “source” simulation through the use of a continuation algorithm. This option is appropriate for
those cases in which a failed simulation may be caused by an inadequate initial guess. If the “distance” between
the source and target can be divided into smaller steps in which information from one step provides an adequate
initial guess for the next step, then the continuation method can step towards the target in increments sufficiently
small to allow for convergence of the simulations.

When the failure occurs, the interval between the last successful evaluation (the source point) and the current
target point is halved and the evaluation is retried. This halving is repeated until a successful evaluation occurs.
The algorithm then marches towards the target point using the last interval as a step size. If a failure occurs while
marching forward, the interval will be halved again. Each invocation of the continuation algorithm is allowed
a total of ten failures (ten halvings result in up to 1024 evaluations from source to target) prior to aborting the
DAKOTA process.

While DAKOTA manages the interval halving and function evaluation invocations, the user is responsible for
managing the initial guess for the simulation program. For example, in a GOMA input file [91], the user specifies
the files to be used for reading initial guess data and writing solution data. When using the last successful eval-
uation in the continuation algorithm, the translation of initial guess data can be accomplished by simply copying
the solution data file leftover from the last evaluation to the initial guess file for the current evaluation (and in
fact this is useful for all evaluations, not just continuation). However, a more general approach would use the
closestsuccessful evaluation (rather than thelast successful evaluation) as the source point in the continuation
algorithm. This will be especially important for nonlocal methods (e.g., genetic algorithms) in which the last
successful evaluation may not necessarily be in the vicinity of the current evaluation. This approach will require
the user to save and manipulate previous solutions (likely tagged with evaluation number) so that the results from
a particular simulation (specified by DAKOTA after internal identification of the closest point) can be used as the
current simulation’s initial guess. This more general approach is not yet supported in DAKOTA.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

258 CHAPTER 20. SIMULATION FAILURE CAPTURING

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Chapter 21

Additional Examples

21.1 Textbook Example

Equation2.3presents the 2-dimensional form of the textbook problem. An extended formulation is stated as

minimize f =
n∑
i=1

(xi − 1)4

subject to g1 = x2
1 −

x2

2
≤ 0 (21.1)

g1 = x2
2 −

x1

2
≤ 0

0.5 ≤ x1 ≤ 5.8
−2.9 ≤ x2 ≤ 2.9

wheren is the number of design variables. The objective function is designed to accommodate an arbitrary
number of design variables in order to allow flexible testing of a variety of data sets. Contour plots for then = 2
case have been shown previously in Figure2.2.

This example problem may also be used to exercise least squares solution methods by modifying the problem
formulation to:

minimize (f)2 + (g1)2 + (g2)2 (21.2)

This modification is performed by simply changing the responses specification for the three functions from
num objective functions = 1 andnum nonlinear inequality constraints = 2 tonum least squares terms
= 3. Note that the two problem formulations are not equivalent and have different solutions.

Another way to exercise the least squares methods which would be equivalent to the optimization formula-
tion would be to select the residual functions to be(xi − 1)2. However, this formulation requires modifica-
tion to text book.C and will not be presented here. Equation21.2, on the other hand, can use the existing
text book.C without modification. Refer to Section21.2 for an example of minimizing the same objective
function using both optimization and least squares approaches.

260 CHAPTER 21. ADDITIONAL EXAMPLES

21.1.1 Methods

The dakota textbook.in file provided in the/Dakota/test directory selects adot mmfd optimizer
to perform constrained minimization using thetext book simulator. Additional gradient-based methods that
can be used include methods from CONMIN, NPSOL, NLPQL, and OPT++. In addition the unconstrained
least squares formulation of Equation21.2can be solved using OPT++ Gauss-Newton, NLSSOL, and NL2SOL
methods.

A multilevel hybrid can also be demonstrated on thetext book problem. Thedakota multilevel.in file
provided in the same directory starts with acoliny ea solution which feeds its best point into acoliny pattern search
optimization which feeds its best point intooptpp newton . While this approach is overkill for such a simple
problem, it is useful for demonstrating the coordination between multiple methods in the multilevel strategy.

In addition,dakota textbook 3pc.in demonstrates the use of a 3-piece interface to perform the parameter
to response mapping, anddakota textbook lhs.in demonstrates the use of Latin hypercube Monte Carlo
sampling for assessing probability of failure as measured by specified response levels.

21.1.2 Optimization Results

For the optimization problem given in Equation21.1, the unconstrained solution
(num nonlinear inequality constraints set to zero) for two design variables is:

x1 = 1.0
x2 = 1.0

with

f∗ = 0.0

The solution for the optimization problem constrained byg1
(num nonlinear inequality constraints set to one) is:

x1 = 0.763
x2 = 1.16

with

f∗ = 0.00388
g∗1 = 0.0 (active)

The solution for the optimization problem constrained byg1 andg2
(num nonlinear inequality constraints set to two) is:

x1 = 0.500
x2 = 0.500

with

f∗ = 0.125
g∗1 = 0.0 (active)
g∗2 = 0.0 (active)

Note that as constraints are added, the design freedom is restricted (the additional constraints are active at the
solution) and an increase in the optimal objective function is observed.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

21.2. ROSENBROCK EXAMPLE 261

21.1.3 Least Squares Results

The solution for the least squares problem given in Equation21.2is:

x1 = 0.566
x2 = 0.566

with the residual functions equal to

f∗ = 0.0713
g∗1 = 0.0371
g∗2 = 0.0371

and a minimal sum of the squares of0.00783.

This study requires selection ofnum least squares terms = 3 in the responses specification and selection
of eitheroptpp g newton , nlssol sqp , or nl2sol in the method specification.

21.2 Rosenbrock Example

The Rosenbrock function [47] is a well known benchmark problem for optimization algorithms. Its standard
two-dimensional formulation can be stated as

minimize f = 100(x2 − x2
1)

2 + (1− x1)2 (21.3)

Two n-dimensional formulations are present in the literature. First, [75] formulates an “extended Rosenbrock”
as:

f =
n/2∑
i=1

[
α(x2i − x2

2i−1)
2 + (1− x2i−1)2

]
(21.4)

Second, [89] formulates a “generalized Rosenbrock” as:

f =
n−1∑
i=1

[
100(xi+1 − x2

i)
2 + (1− xi)2

]
(21.5)

These formulations are not currently supported in DAKOTA’s system/fork/direct interfaces.

Surface and contour plots for this function have been shown previously in Figure2.1. This example problem may
also be used to exercise least squares solution methods by recasting the problem formulation into:

minimize f = (f1)2 + (f2)2 (21.6)

where
f1 = 10(x2 − x2

1) (21.7)

and
f2 = 1− x1 (21.8)

are residual terms. In this case (unlike the least squares modification in Section21.1), the two problem formula-
tions are equivalent and have identical solutions.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

262 CHAPTER 21. ADDITIONAL EXAMPLES

21.2.1 Methods

In the /Dakota/test directory, therosenbrock executable (compiled fromrosenbrock.C) checks the
number of response functions passed in the parameters file and returns either an objective function (as com-
puted from Equation21.3) for use with optimization methods or two least squares terms (as computed from
Equations21.7-21.8) for use with least squares methods. Both cases support analytic gradients of the func-
tion set with respect to the design variables. Thedakota rosenbrock.in input file can be used to solve
both problems by toggling settings in the method and responses specifications. To run the optimization solu-
tion, selectnum objective functions = 1 in the responses specification, and select an optimizer (e.g.,
optpp q newton) in the method specification, e.g.:

method, \
optpp_q_newton \

convergence_tolerance = 1e-10 \

variables, \
continuous_design = 2 \

cdv_initial_point -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptor ’x1’ ’x2’ \

interface, \
system \

analysis_driver = ’rosenbrock’ \

responses, \
num_objective_functions = 1 \
analytic_gradients \
no_hessians

To run the least squares solution, the responses specification is changed tonum least squares terms = 2
and the method specification is changed to a least squares method (e.g.,optpp g newton):

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

21.2. ROSENBROCK EXAMPLE 263

method, \
optpp_g_newton \

convergence_tolerance = 1e-10 \

variables, \
continuous_design = 2 \

cdv_initial_point -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptor ’x1’ ’x2’ \

interface, \
system \

analysis_driver = ’rosenbrock’ \

responses, \
num_least_squares_terms = 2 \
analytic_gradients \
no_hessians

21.2.2 Results

The optimal solution, solved either as a least squares problem or an optimization problem, is:

x1 = 1.0
x2 = 1.0

with

f∗ = 0.0

In comparing the two approaches, one would expect the Gauss-Newton approach to be more efficient since
it exploits the special-structure of a least squares objective function and, in this problem, the Gauss-Newton
Hessian is a good approximation since the least squares residuals are zero at the solution. From a good initial
guess, this expected behavior is clearly demonstrated. Starting fromcdv initial point = 0.8, 0.7 , the
optpp g newton method converges in only 3 function and gradient evaluations while theoptpp q newton
method requires 27 function and gradient evaluations to achieve similar accuracy. Starting from a poorer initial
guess (e.g.,cdv initial point = -1.2, 1.0), the trend is less obvious since both methods spend several
evaluations finding the vicinity of the minimum (total function and gradient evaluations = 45 foroptpp q newton
and 29 foroptpp g newton). However, once the vicinity is located and the Hessian approximation becomes
accurate, convergence is much more rapid with the Gauss-Newton approach.

Shown below is the complete DAKOTA output for theoptpp g newton method starting from
cdv initial point = 0.8, 0.7 :

Running MPI executable in serial mode.
DAKOTA version 4.0 released 05/12/2006.
Writing new restart file dakota.rst
Constructing Single Method Strategy...

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

264 CHAPTER 21. ADDITIONAL EXAMPLES

methodName = optpp_g_newton
gradientType = analytic
hessianType = none

>>>>> Running Single Method Strategy.

>>>>> Running optpp_g_newton iterator.

Begin Function Evaluation 1

Parameters for function evaluation 1:

8.0000000000e-01 x1
7.0000000000e-01 x2

(rosenbrock /tmp/fileL0ma4g /tmp/fileFWlOrs)

Active response data for function evaluation 1:
Active set vector = { 3 3 }

6.0000000000e-01 least_sq_term_1
2.0000000000e-01 least_sq_term_2

[-1.6000000000e+01 1.0000000000e+01] least_sq_term_1 gradient
[-1.0000000000e+00 0.0000000000e+00] least_sq_term_2 gradient

nlf2_evaluator_gn results: objective fn. =
4.0000000000e-01
nlf2_evaluator_gn results: objective fn. gradient =

[-1.9600000000e+01 1.2000000000e+01]
nlf2_evaluator_gn results: objective fn. Hessian =

[[5.1400000000e+02 -3.2000000000e+02
-3.2000000000e+02 2.0000000000e+02]]

Begin Function Evaluation 2

Parameters for function evaluation 2:

9.9999528206e-01 x1
9.5999243139e-01 x2

(rosenbrock /tmp/filebYPXWD /tmp/fileHlm8rP)

Active response data for function evaluation 2:
Active set vector = { 3 3 }

-3.9998132761e-01 least_sq_term_1
4.7179363789e-06 least_sq_term_2

[-1.9999905641e+01 1.0000000000e+01] least_sq_term_1 gradient
[-1.0000000000e+00 0.0000000000e+00] least_sq_term_2 gradient

nlf2_evaluator_gn results: objective fn. =
1.5998506246e-01
nlf2_evaluator_gn results: objective fn. gradient =

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

21.3. CYLINDER HEAD EXAMPLE 265

[1.5999168185e+01 -7.9996265522e+00]
nlf2_evaluator_gn results: objective fn. Hessian =

[[8.0199245132e+02 -3.9999811283e+02
-3.9999811283e+02 2.0000000000e+02]]

Begin Function Evaluation 3

Parameters for function evaluation 3:

9.9999904377e-01 x1
9.9999808276e-01 x2

(rosenbrock /tmp/filejsKoY0 /tmp/filej7aGuc)

Active response data for function evaluation 3:
Active set vector = { 3 3 }

-4.7950734360e-08 least_sq_term_1
9.5622502239e-07 least_sq_term_2

[-1.9999980875e+01 1.0000000000e+01] least_sq_term_1 gradient
[-1.0000000000e+00 0.0000000000e+00] least_sq_term_2 gradient

nlf2_evaluator_gn results: objective fn. =
9.1666556636e-13
nlf2_evaluator_gn results: objective fn. gradient =

[5.5774955704e-09 -9.5901468721e-07]
nlf2_evaluator_gn results: objective fn. Hessian =

[[8.0199847004e+02 -3.9999961751e+02
-3.9999961751e+02 2.0000000000e+02]]

<<<<< Iterator optpp_g_newton completed.
<<<<< Function evaluation summary: 3 total (3 new, 0 duplicate)
<<<<< Best parameters =

9.9999904377e-01 x1
9.9999808276e-01 x2

<<<<< Best residual terms =
-4.7950734360e-08

9.5622502239e-07
<<<<< Best data captured at function evaluation 3
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:

Total CPU = 0.01 [parent = 0.01, child =1.73472e-18]
Total wall clock = 0.128705

21.3 Cylinder Head Example

The cylinder head example problem is stated as:

minimize f = −1
(
horsepower

250
+

warranty

100000

)
DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

266 CHAPTER 21. ADDITIONAL EXAMPLES

subject to σmax ≤ 0.5σyield (21.9)

warranty ≥ 100000
timecycle ≤ 60
1.5 ≤ dintake ≤ 2.164
0.0 ≤ flatness ≤ 4.0

This formulation seeks to simultaneously maximize normalized engine horsepower and engine warranty over
variables of valve intake diameter (dintake) in inches and overall head flatness (flatness) in thousandths of an
inch subject to inequality constraints that the maximum stress cannot exceed half of yield, that warranty must
be at least 100000 miles, and that manufacturing cycle time must be less than 60 seconds. Since the constraints
involve different scales, they should be nondimensionalized (note: the nonlinear constraint scaling described in
Section7.3.3can now do this automatically). In addition, they can be converted to the standard 1-sided form
g(x) ≤ 0 as follows:

g1 =
2σmax
σyield

− 1 ≤ 0

g2 = 1− warranty

100000
≤ 0 (21.10)

g3 =
timecycle

60
− 1 ≤ 0

The objective function and constraints are related analytically to the design variables according to the following
simple expressions:

warranty = 100000 + 15000(4− flatness)
timecycle = 45 + 4.5(4− flatness)1.5

horsepower = 250 + 200
(
dintake
1.833

− 1
)

(21.11)

σmax = 750 +
1

(twall)2.5

twall = offsetintake − offsetexhaust −
(dintake − dexhaust)

2

where the constants in Equation21.10and Equation21.11assume the following values:σyield = 3000, offsetintake =
3.25, offsetexhaust = 1.34, anddexhaust = 1.556.

21.3.1 Methods

In the /Dakota/test directory, thedakota cyl head.in input file is used to execute a variety of tests
using the cylinder head example. One of these tests is shown below:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

21.3. CYLINDER HEAD EXAMPLE 267

method, \
npsol_sqp \

convergence_tolerance = 1.e-8

variables, \
continuous_design = 2 \

cdv_initial_point 1.8 1.0 \
cdv_upper_bounds 2.164 4.0 \
cdv_lower_bounds 1.5 0.0 \
cdv_descriptor ’intake_dia’ ’flatness’ \

interface, \
fork asynchronous \

analysis_driver = ’cyl_head’ \

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 3 \
numerical_gradients \

method_source dakota \
interval_type central \
fd_gradient_step_size = 1.e-4 \

no_hessians

The interface keyword specifies use of thecyl head executable (compiled from/Dakota/test/cyl head.C)
as the simulator. The variables and responses keywords specify the data sets to be used in the iteration by pro-
viding the initial point, descriptors, and upper and lower bounds for two continuous design variables and by
specifying the use of one objective function, three inequality constraints, and numerical gradients in the problem.
The method keyword specifies the use of thenpsol sqp method to solve this constrained optimization problem.
No strategy keyword is specified, so the defaultsingle method strategy is used.

21.3.2 Optimization Results

The solution for the constrained optimization problem is:

intake dia = 2.122
flatness = 1.769

with

f∗ = −2.461
g∗1 = 0.0 (active)
g∗2 = −0.3347 (inactive)
g∗3 = 0.0 (active)

which corresponds to the following optimal response quantities:

warranty = 133472

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

268 CHAPTER 21. ADDITIONAL EXAMPLES

Figure 21.1: Container wall-to-end-cap seal

cycle time = 60
wall thickness = 0.0707906

horse power = 281.579
max stress = 1500

The final report from the DAKOTA output is as follows:

<<<<< Iterator npsol_sqp completed.
<<<<< Function evaluation summary: 55 total (55 new, 0 duplicate)
<<<<< Best parameters =

2.1224188322e+00 intake_dia
1.7685568331e+00 flatness

<<<<< Best objective function =
-2.4610312954e+00

<<<<< Best constraint values =
1.8417266410e-13

-3.3471647504e-01
0.0000000000e+00

<<<<< Best data captured at function evaluation 51
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:

Total CPU = 0.11 [parent = 0.11, child = 0]
Total wall clock = 0.506244

21.4 Container Example

For this example, suppose that a high-volume manufacturer of light weight steel containers wants to minimize
the amount of raw sheet material that must be used to manufacture a 1.1 quart cylindrical-shaped can, including
waste material. Material for the container walls and end caps is stamped from stock sheet material of constant
thickness. The seal between the end caps and container wall is manufactured by a press forming operation on the
end caps. The end caps can then be attached to the container wall forming a seal through a crimping operation.

For preliminary design purposes, the extra material that would normally go into the container end cap seals is
approximated by increasing the cut dimensions of the end cap diameters by 12% and the height of the container
wall by 5%, and waste associated with stamping the end caps in a specialized pattern from sheet stock is estimated
as 15% of the cap area. The equation for the area of the container materials including waste is

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

21.4. CONTAINER EXAMPLE 269

A = 2×


end cap
waste

material
factor

×


end cap
seal

material
factor

×

 nominal
end cap
area

+


container
wall seal
material
factor

×

 nominal
container
wall area


or

A = 2(1.15)(1.12)π
D2

4
+ (1.05)πDH (21.12)

whereD andH are the diameter and height of the finished product in units of inches, respectively. The volume
of the finished product is specified to be

V = π
D2H

4
= (1.1qt)(57.75in3/qt) (21.13)

The equation for area is the objective function for this problem; it is to be minimized. The equation for volume is
an equality constraint; it must be satisfied at the conclusion of the optimization problem. Any combination ofD
andH that satisfies the volume constraint is afeasiblesolution (although not necessarily the optimal solution) to
the area minimization problem, and any combination that does not satisfy the volume constraint is aninfeasible
solution. The area that is a minimum subject to the volume constraint is theoptimal area, and the corresponding
values for the parametersD andH are the optimal parameter values.

It is important that the equations supplied to a numerical optimization code be limited to generating only phys-
ically realizable values, since an optimizer will not have the capability to differentiate between meaningful and
nonphysical parameter values. It is often up to the engineer to supply these limits, usually in the form of param-
eter bound constraints. For example, by observing the equations for the area objective function and the volume
constraint, it can be seen that by allowing the diameter,D, to become negative, it is algebraically possible to
generate relatively small values for the area that also satisfy the volume constraint. Negative values forD are of
course physically meaningless. Therefore, to ensure that the numerically-solved optimization problem remains
meaningful, a bound constraint ofD ≤ 0 must be included in the optimization problem statement. A positive
value forH is implied since the volume constraint could never be satisfied ifH were negative. However, a bound
constraint ofH ≤ 0 can be added to the optimization problem if desired. The optimization problem can then be
stated in a standardized form as

minimize 2(1.15)(1.12)π
D2

4
+ (1.05)2πDH

subject to π
D2H

4
= (1.1qt)(57.75in3/qt) (21.14)

D ≤ 0,H ≤ 0

A graphical view of the container optimization problem appears in Figure21.2. The 3-D surface defines the
area,A, as a function of diameter and height. The curved line that extends across the surface defines the areas
that satisfy the volume equality constraint,V . Graphically, the container optimization problem can be viewed as
one of finding the point along the constraint line with the smallest 3-D surface height in Figure21.2. This point
corresponds to the optimal values for diameter and height of the final product.

The input file for this test problem is nameddakota container.in in the directory/Dakota/test . The
solution to this example problem is(H,D) = (4.99, 4.03), with a minimum area of 98.43in2 .

The final report from the DAKOTA output is as follows:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

270 CHAPTER 21. ADDITIONAL EXAMPLES

Figure 21.2: A graphical representation of the container optimization problem.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

21.5. LOG RATIO EXAMPLE 271

<<<<< Iterator npsol_sqp completed.
<<<<< Function evaluation summary: 40 total (40 new, 0 duplicate)
<<<<< Best parameters =

4.9873894231e+00 H
4.0270846274e+00 D

<<<<< Best objective function =
9.8432498116e+01

<<<<< Best constraint values =
-9.6301439045e-12

<<<<< Best data captured at function evaluation 36
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:

Total CPU = 0.18 [parent = 0.18, child = 0]
Total wall clock = 0.809126

21.5 Log Ratio Example

This test problem, mentioned previously in Section6.3.3, has a limit state function defined by the ratio of two
lognormally-distributed random variables.

g(x) =
x1

x2
(21.15)

The distributions for bothx1 andx2 are Lognormal(1, 0.5) with a correlation coefficient between the two variables
of 0.3.

First-order and second-order reliability analysis are performed in thedakota logratio.in and
dakota logratio taylor2.in input files, respectively. For RIA, 24 response levels (.4, .5, .55, .6, .65,
.7, .75, .8, .85, .9, 1, 1.05, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.5, 1.55, 1.6, 1.65, 1.7, and 1.75) are mapped into the
corresponding cumulative probability levels. For PMA, these 24 probability levels (the fully converged results
from RIA FORM) are mapped back into the original response levels. Figure21.3overlays the computed CDF
values for a number of first-order reliability method variants as well as a Latin Hypercube reference solution of
106 samples.

21.6 Steel Section Example

This test problem is used extensively in [56]. It involves a W16x31 steel section of A36 steel that must carry an
applied deterministic bending moment of 1140 kip-in. For DAKOTA, it has been used as a verification test for
second-order integrations in reliability methods. The limit state function is defined as:

g(x) = FyZ − 1140 (21.16)

whereFy is Lognormal(38., 3.8),Z is Normal(54., 2.7), and the variables are uncorrelated.

Thedakota steel section.in input file computes a first-order CDF probability ofp(g ≤ 0.) = 1.297e-07
and a second-order CDF probability ofp(g ≤ 0.) = 1.375e-07. This second-order result differs from that reported
in [56], since DAKOTA uses the Nataf nonlinear transformation to u-space (see Equations6.14-6.15) and [56]
uses a linearized transformation.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

272 CHAPTER 21. ADDITIONAL EXAMPLES

(a) RIA methods (b) PMA methods

Figure 21.3: Lognormal ratio cumulative distribution function, RIA/PMA methods.

21.7 Portal Frame Example

This test problem is taken from [98, 61]. It involves a plastic collapse mechanism of a simple portal frame. It also
has been used as a verification test for second-order integrations in reliability methods. The limit state function is
defined as:

g(x) = x1 + 2x2 + 2x3 + x4 − 5x5 − 5x6 (21.17)

wherex1 − x4 are Lognormal(120., 12.),x5 is Lognormal(50., 15.),x6 is Lognormal(40., 12.), and the variables
are uncorrelated.

While the limit state is linear in x-space, the nonlinear transformation of lognormals to u-space induces curvature.
Thedakota portal frame.in input file computes a first-order CDF probability ofp(g ≤ 0.) = 9.433e-03
and a second-order CDF probability ofp(g ≤ 0.) = 1.201e-02. These results agree with the published results
from the literature.

21.8 Short Column Example

This test problem involves the plastic analysis and design of a short column with rectangular cross section (widthb
and depthh) having uncertain material properties (yield stressY) and subject to uncertain loads (bending moment
M and axial forceP) [67]. The limit state function is defined as:

g(x) = 1− 4M
bh2Y

− P 2

b2h2Y 2
(21.18)

The distributions forP , M , andY are Normal(500, 100), Normal(2000, 400), and Lognormal(5, 0.5), respec-
tively, with a correlation coefficient of 0.5 betweenP andM (uncorrelated otherwise). The nominal values forb
andh are 5 and 15, respectively.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

21.8. SHORT COLUMN EXAMPLE 273

(a) RIA methods (b) PMA methods

Figure 21.4: Short column cumulative distribution function, RIA/PMA methods.

21.8.1 Uncertainty Quantification

First-order and second-order reliability analysis are performed in thedakota short column.in anddakota short column taylor2.in
input files, respectively. For RIA, 43 response levels (-9.0, -8.75, -8.5, -8.0, -7.75, -7.5, -7.25, -7.0, -6.5, -6.0, -5.5,
-5.0, -4.5, -4.0, -3.5, -3.0, -2.5, -2.0, -1.9, -1.8, -1.7, -1.6, -1.5, -1.4, -1.3, -1.2, -1.1, -1.0, -0.9, -0.8, -0.7, -0.6, -0.5,
-0.4, -0.3, -0.2, -0.1, 0.0, 0.05, 0.1, 0.15, 0.2, 0.25) are mapped into the corresponding cumulative probability
levels. For PMA, these 43 probability levels (the fully converged results from RIA FORM) are mapped back
into the original response levels. Figure21.4overlays the computed CDF values for several first-order reliability
method variants as well as a Latin Hypercube reference solution of106 samples.

21.8.2 Reliability-Based Design Optimization

The short column example problem is also amenable to RBDO. An objective function of cross-sectional area
and a target reliability index of 2.5 (cumulative failure probabilityp(g ≤ 0) ≤ 0.00621) are used in the design
problem:

min bh

s.t. β ≥ 2.5
5.0 ≤ b ≤ 15.0
15.0 ≤ h ≤ 25.0 (21.19)

As is evident from the UQ results shown in Figure21.4, the initial design of(b, h) = (5, 15) is infeasible and the
optimization must add material to obtain the target reliability at the optimal design(b, h) = (8.68, 25.0). Simple
bi-level, fully analytic bi-level, and sequential RBDO methods are explored in
dakota rbdo short column.in , dakota rbdo short column analytic.in , and
dakota rbdo short column trsb.in , with results as described in [27, 28].

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

274 CHAPTER 21. ADDITIONAL EXAMPLES

Figure 21.5: Cantilever beam test problem.

21.9 Cantilever Example

This test problem is adapted from the reliability-based design optimization literature [94], [105] and involves a
simple uniform cantilever beam as shown in Figure21.5.

The design problem is to minimize the weight (or, equivalently, the cross-sectional area) of the beam subject to a
displacement constraint and a stress constraint. Random variables in the problem include the yield stressR of the
beam material, the Young’s modulusE of the material, and the horizontal and vertical loads,X andY , which are
modeled with normal distributions usingN(40000, 2000), N(2.9E7, 1.45E6), N(500, 100), andN(1000, 100),
respectively. Problem constants includeL = 100in andD0 = 2.2535in. The constraints have the following
analytic form:

stress =
600
wt2

Y +
600
w2t

X ≤ R (21.20)

displacement =
4L3

Ewt

√(
Y

t2

)2

+
(
X

w2

)2

≤ D0

or when scaled:

gS =
stress

R
− 1 ≤ 0 (21.21)

gD =
displacement

D0
− 1 ≤ 0

(21.22)

21.9.1 Deterministic Optimization Results

If the random variablesE, R, X, andY are fixed at their means, the resulting deterministic design problem can
be formulated as

minimize f = wt

subject to gS ≤ 0 (21.23)

gD ≤ 0
1.0 ≤ w ≤ 4.0
1.0 ≤ t ≤ 4.0

and can be solved using the/Dakota/test/dakota cantilever.in file. This input file manages a vari-
ety of tests, of which a sample is shown below:

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

21.9. CANTILEVER EXAMPLE 275

method, \
npsol_sqp \

convergence_tolerance = 1.e-8

variables, \
continuous_design = 2 \

cdv_initial_point 4.0 4.0 \
cdv_upper_bounds 10.0 10.0 \
cdv_lower_bounds 1.0 1.0 \
cdv_descriptor ’beam_width’ ’beam_thickness’ \

continuous_state = 4 \
csv_initial_state 40000. 29.E+6 500. 1000. \
csv_descriptor ’R’ ’E’ ’X’ ’Y’

interface, \
system \

asynchronous evaluation_concurrency = 2 \
analysis_driver = ’cantilever’

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
numerical_gradients \

method_source dakota \
interval_type forward \
fd_gradient_step_size = 1.e-4 \

no_hessians

The deterministic solution is(w, t) = (2.35, 3.33) with an objective function of7.82. The final report from the
DAKOTA output is as follows:

<<<<< Iterator npsol_sqp completed.
<<<<< Function evaluation summary: 33 total (33 new, 0 duplicate)
<<<<< Best parameters =

2.3520341271e+00 beam_width
3.3262784077e+00 beam_thickness
4.0000000000e+04 R
2.9000000000e+07 E
5.0000000000e+02 X
1.0000000000e+03 Y

<<<<< Best objective function =
7.8235203313e+00

<<<<< Best constraint values =
-1.6009000260e-02
-3.7081115956e-11

<<<<< Best data captured at function evaluation 31
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:

Total CPU = 0.08 [parent = 0.08, child = 0]
Total wall clock = 0.569573

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

276 CHAPTER 21. ADDITIONAL EXAMPLES

21.9.2 Stochastic Optimization Results

If the normal distributions for the random variablesE,R,X, andY are included, a stochastic design problem can
be formulated as

minimize f = wt

subject to βD ≥ 3 (21.24)

βS ≥ 3
1.0 ≤ w ≤ 4.0
1.0 ≤ t ≤ 4.0

where a 3-sigma reliability level (probability of failure = 0.00135 if responses are normally-distributed) is being
sought on the scaled constraints. Optimization under uncertainty solutions to the stochastic problem are described
in [32, 27, 28], for which the solution is(w, t) = (2.45, 3.88) with an objective function of9.52. This demon-
strates that a more conservative design is needed to satisfy the probabilistic constraints.

21.10 Steel Column Example

This test problem involves the trade-off between cost and reliability for a steel column [67]. The cost is defined
as

Cost = bd+ 5h (21.25)

whereb, d, andh are the means of the flange breadth, flange thickness, and profile height, respectively. Nine uncor-
related random variables are used in the problem to define the yield stressFs (lognormal withµ/σ = 400/35 MPa),
dead weight loadP1 (normal withµ/σ = 500000/50000 N), variable loadP2 (gumbel withµ/σ = 600000/90000
N), variable loadP3 (gumbel withµ/σ = 600000/90000 N), flange breadthB (lognormal withµ/σ = b/3 mm),
flange thicknessD (lognormal withµ/σ = d/2 mm), profile heightH (lognormal withµ/σ = h/5 mm), initial
deflectionF0 (normal withµ/σ = 30/10 mm), and youngs modulusE (weibull with µ/σ = 21000/4200 MPa).
The limit state has the following analytic form:

g = Fs − P

(
1

2BD
+

F0

BDH

Eb
Eb − P

)
(21.26)

where

P = P1 + P2 + P3 (21.27)

Eb =
π2EBDH2

2L2
(21.28)

and the column lengthL is 7500 mm.

This design problem (dakota rbdo steel column mapvars.in in /Dakota/test) demonstrates de-
sign variable insertion into random variable distribution parameters through the design of the mean flange breadth,
flange thickness, and profile height. The RBDO formulation maximizes the reliability subject to a cost constraint:

maximize β

subjectto Cost ≤ 4000.
200.0 ≤ b ≤ 400.0 (21.29)

10.0 ≤ d ≤ 30.0
100.0 ≤ h ≤ 500.0

which has the solution (b, d, h) = (200.0, 17.50, 100.0) with a maximal reliability of 3.132.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

21.11. MULTIOBJECTIVE EXAMPLES 277

21.11 Multiobjective Examples

There are three examples in the test directory that are taken from a multiobjective evolutionary algorithm (MOEA)
test suite described by Van Veldhuizen et. al. in [15]. These three problems are good examples to illustrate the
different forms that the Pareto set may take. For each problem, we describe the DAKOTA input and show a graph
of the Pareto front. These problems are all solved with themoga method. In Van Veldhuizen’s notation, the set
of all Pareto optimal design configurations (design variable values only) is denotedP∗ or Ptrue and is defined as:

P ∗ := {x ∈ Ω | ¬∃ x′ ∈ Ω f̄(x′) � f̄(x)}

The Pareto front, which is the set of objective function values associated with the Pareto optimal design configu-
rations, is denotedPF∗ or PFtrue and is defined as:

PF ∗ := {ū = f̄ = (f1(x), . . . , fk(x)) |x ∈ P ∗}

The values calculated for the Pareto set and the Pareto front using the moga method are close to but not always
exactly the true values, depending on the number of generations the moga is run, the various settings governing
the GA, and the complexity of the Pareto set.

21.11.1 Multiobjective Test Problem 1

The first test problem is a case wherePtrue is connected andPFtrue is concave. The problem is to simultaneously
optimizef1 andf2 given three input variables,x1, x2, andx3, where the inputs are bounded by−4 ≤ xi ≤ 4:

f1(x) = 1− exp

(
−

3∑
i=1

(
xi −

1√
3

)2
)

f2(x) = 1− exp

(
−

3∑
i=1

(
xi +

1√
3

)2
)

The input file for this example is shown in Figure21.6. The interface keyword specifies the use of themogatest1
executable (compiled from/Dakota/test/mogatest1.C) as the simulator. The Pareto front is shown in
Figure21.7.

21.11.2 Multiobjective Test Problem 2

The second test problem is a case where bothPtrue andPFtrue are disconnected.PFtrue has four separate Pareto
curves. The problem is to simultaneously optimizef1 andf2 given two input variables,x1 andx2, where the
inputs are bounded by0 ≤ xi ≤ 1, and:

f1(x) = x1

f2(x) = (1 + 10x2)×

[
1−

(
x1

1 + 10x2

)2

− x1

1 + 10x2
sin(8πx1)

]

The input file for this example is shown in Figure21.8. It differs from Figure21.6in the variables specification, in
the use of themogatest2 executable (compiled from/Dakota/test/mogatest2.C) as the simulator, and
in themax function evaluations andcrossover type MOGA controls. The Pareto front is shown in
Figure21.9. Note the discontinous nature of the front in this example.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

278 CHAPTER 21. ADDITIONAL EXAMPLES

strategy, \
single \
graphics tabular_graphics_data

method, \
moga \
output silent \
seed = 10983 \
max_function_evaluations = 2500 \
initialization_type unique_random \
crossover_type shuffle_random \

num_offspring = 2 num_parents = 2 \
crossover_rate = 0.8 \

mutation_type replace_uniform \
mutation_rate = 0.1 \

fitness_type domination_count \
replacement_type below_limit = 6 \

shrinkage_percentage = 0.9 \
convergence_type metric_tracker \

percent_change = 0.05 num_generations = 10

variables, \
continuous_design = 3 \

cdv_initial_point 0 0 0 \
cdv_upper_bounds 4 4 4 \
cdv_lower_bounds -4 -4 -4 \
cdv_descriptor ’x1’ ’x2’ ’x3’ \

interface, \
system \

analysis_driver = ’mogatest1’ \

responses, \
num_objective_functions = 2 \
no_gradients \
no_hessians

Figure 21.6: DAKOTA input file specifying the use of MOGA on mogatest1

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

21.11. MULTIOBJECTIVE EXAMPLES 279

Figure 21.7: Pareto Front showing Tradeoffs between Function F1 and Function F2 for mogatest1

21.11.3 Multiobjective Test Problem 3

The third test problem is a case wherePtrue is disconnected butPFtrue is connected. It is called the Srinivas
problem in the literature (cite). This problem also has two nonlinear constraints. The problem is to simultaneously
optimizef1 andf2 given two input variables,x1 andx2, where the inputs are bounded by−20 ≤ xi ≤ 20, and:

f1(x) = (x1 − 2)2 + (x2 − 1)2 + 2
f2(x) = 9x1 − (x2 − 1)2

The constraints are:

0 ≤ x2
1 + x2

2 − 225
0 ≤ x1 − 3x2 + 10

The input file for this example is shown in Figure21.10. It differs from Figure21.8in the variables and responses
specifications, in the use of themogatest3 executable (compiled from/Dakota/test/mogatest3.C) as
the simulator, and in themax function evaluations andmutation type MOGA controls. The Pareto
set is shown in Figure21.11. Note the discontinous nature of the Pareto set (in the design space) in this example.
The Pareto front is shown in Figure21.12.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

280 CHAPTER 21. ADDITIONAL EXAMPLES

strategy, \
single \
graphics tabular_graphics_data

method, \
moga \
output silent \
seed = 10983 \
max_function_evaluations = 3000 \
initialization_type unique_random \
crossover_type \

multi_point_parameterized_binary = 2 \
crossover_rate = 0.8 \

mutation_type replace_uniform \
mutation_rate = 0.1 \

fitness_type domination_count \
replacement_type below_limit = 6 \

shrinkage_percentage = 0.9 \
convergence_type metric_tracker \

percent_change = 0.05 num_generations = 10

variables, \
continuous_design = 2 \

cdv_initial_point 0.5 0.5 \
cdv_upper_bounds 1 1 \
cdv_lower_bounds 0 0 \
cdv_descriptor ’x1’ ’x2’ \

interface, \
system \

analysis_driver = ’mogatest2’ \

responses, \
num_objective_functions = 2 \
no_gradients \
no_hessians

Figure 21.8: DAKOTA input file specifying the use of MOGA on mogatest2

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

21.11. MULTIOBJECTIVE EXAMPLES 281

Figure 21.9: Pareto Front showing Tradeoffs between Function F1 and Function F2 for mogatest2

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

282 CHAPTER 21. ADDITIONAL EXAMPLES

strategy, \
single \
graphics tabular_graphics_data

method, \
moga \
output silent \
seed = 10983 \
max_function_evaluations = 2000 \
initialization_type unique_random \
crossover_type \

multi_point_parameterized_binary = 2 \
crossover_rate = 0.8 \

mutation_type offset_normal \
mutation_scale = 0.5 \

fitness_type domination_count \
replacement_type below_limit = 6 \

shrinkage_percentage = 0.9 \
convergence_type metric_tracker \

percent_change = 0.05 num_generations = 10

variables, \
continuous_design = 2 \

cdv_descriptor ’x1’ ’x2’ \
cdv_initial_point 0 0 \
cdv_upper_bounds 20 20 \
cdv_lower_bounds -20 -20 \

interface, \
system \

analysis_driver = ’mogatest3’

responses, \
num_objective_functions = 2 \
num_nonlinear_inequality_constraints = 2 \
nonlinear_inequality_upper_bounds = 0.0 0.0 \
no_gradients \
no_hessians

Figure 21.10: DAKOTA input file specifying the use of MOGA on mogatest3

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

21.11. MULTIOBJECTIVE EXAMPLES 283

Figure 21.11: Pareto Set of Design Variables corresponding to the Pareto front for mogatest3

Figure 21.12: Pareto Front showing Tradeoffs between Function F1 and Function F2 for mogatest3

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

284 CHAPTER 21. ADDITIONAL EXAMPLES

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

Bibliography

[1] N. M. Alexandrov, R. M. Lewis, C. R. Gumbert, L. L. Green, and P. A. Newman. Optimization with
variable-fidelity models applied to wing design. InProceedings of the 38th Aerospace Sciences Meeting
and Exhibit, Reno, NV, 2000. AIAA Paper 2000-0841.127, 128

[2] M. Allen and K. Maute. Reliability-based design optimization of aeroelastic structures.Struct. Multidiscip.
O., 27:228–242, 2004.151

[3] G. Anderson and P. Anderson.The UNIX C Shell Field Guide. Prentice-Hall, Englewood Cliffs, NJ, 1986.
24, 169, 170, 205, 255

[4] J. S. Arora.Introduction to Optimum Design. McGraw-Hill, New York, 1989. 15

[5] R. Bartlett. Object-Oriented Approaches to Large-Scale NonLinear Programming For Process Systems
Engineering. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 2001.112

[6] R. A. Bartlett and L. T. Biegler. rSQP++: An object-oriented framework for successive quadratic program-
ming. Abstract for First Sandia Workshop on Large-scale PDE-constrained Optimization, Santa Fe, NM,
April 4, 2001; to appear in Springer-Verlag Lecture Notes in Computational Science and Engineering.229

[7] G. Biros. Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, 2000.112

[8] B. Blinn. Portable Shell Programming: An Extensive Collection of Bourne Shell Examples. Prentice Hall
PTR, New Jersey, 1996.205, 255

[9] G. E. P. Box and D. R. Cox. An analysis of transformations.J. Royal Stat. Soc., Series B, 26:211–252,
1964. 88

[10] K. Breitung. Asymptotic approximation for multinormal integrals.J. Eng. Mech., ASCE, 110(3):357–366,
1984. 91

[11] R. H. Byrd, R. B. Schnabel, and G. A. Schultz. Parallel quasi-newton methods for unconstrained optimiza-
tion. Mathematical Programming, 42:273–306, 1988.217

[12] M. R. Celis, J. .E. Dennis, and R. .A Tapia. A trust region strategy for nonlinear equality constrained
optimization. In P. .T. Boggs, R. H. Byrd, and R. B. Schnabel, editors,Numerical Optimization 1984,
pages 71–82. SIAM, Philadelphia, USA, 1985.128

[13] K. J. Chang, R. T. Haftka, G. L. Giles, and P.-J. Kao. Sensitivity-based scaling for approximating structural
response.J. Aircraft, 30:283–288, 1993.138

[14] X. Chen and N.C. Lind. Fast probability integration by three-parameter normal tail approximation.Struct.
Saf., 1:269–276, 1983.88

286 BIBLIOGRAPHY

[15] C. A. Coello, D. A. Van Veldhuizen, and G. B. Lamont.Evolutionary Algorithms for Solving Multi-
Objective Problems. Kluwer Academic/Plenum Publishers, New York, 2002.43, 277

[16] A. R. Conn, N. I. M. Gould, and P. L. Toint.Trust-Region Methods. MPS-SIAM Series on Optimization,
SIAM-MPS, Philadelphia, 2000.130

[17] N. Cressie.Statistics of Spatial Data. John Wiley and Sons, New York, 1991.142

[18] J. E. Dennis, D. M. Gay, and R. E. Welsch. ALGORITHM 573: NL2SOL–an adaptive nonlinear least-
squares algorithm.ACM Trans. Math. Software, 7:369–383, 1981.58, 116

[19] J. E. Dennis and R. M. Lewis. Problem formulations and other optimization issues in multidisciplinary
optimization. InProc. AIAA Symposium on Fluid Dynamics, number AIAA-94-2196, Colorado Springs,
Colordao, June 1994.216

[20] J. E. Dennis and V. J. Torczon. Derivative-free pattern search methods for multidisciplinary design prob-
lems. InProc. 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
number AIAA-94-4349, pages 922–932, Panama City, FL, September 7–9 1994.107

[21] A. Der Kiureghian and P. L. Liu. Structural reliability under incomplete information.J. Eng. Mech., ASCE,
112(EM-1):85–104, 1986.85, 88

[22] Q. Du, V. Faber, and M. Gunzburger. Centroidal voronoi tessellations: Applications and algorithms.SIAM
Review, 41:637–676, 1999.77

[23] X. Du and W. Chen. Sequential optimization and reliability assessment method for efficient probabilistic
design.J. Mech. Design, 126:225–233, 2004.152

[24] J. Eckstein, W. E. Hart, and C. A. Phillips. Resource management in a parallel mixed integer programming
package. InProc. 1997 Intel Supercomputer Users Group Conference, Albuquerque, NM, June 11–13
1997.http://www.cs.sandia.gov/ISUG97/program.html . 125

[25] J. Eckstein, W. E. Hart, and C. A. Phillips. PICO: An object-oriented framework for parallel branch and
bound. In D. Butnariu, Y. Censor, and S. Reich, editors,Inherently Parallel Algorithms in Feasibility and
Optimization and their Applications. Elsevier Science Publishers, Amsterdam, Netherlands, 2001.56, 125

[26] M. S. Eldred. Optimization strategies for complex engineering applications. Technical Report SAND98-
0340, Sandia National Laboratories, Albuquerque, NM, 1998.13, 167

[27] M. S. Eldred, H. Agarwal, V. M. Perez, Jr. Wojtkiewicz, S. F., and J. E. Renaud. Investigation of reliability
method formulations in dakota/uq.Structure & Infrastructure Engineering: Maintenance, Management,
Life-Cycle Design & Performance. 79, 89, 145, 152, 273, 276

[28] M. S. Eldred and B. J. Bichon. New second-order formulations for reliability analysis and design.AIAA J.
89, 145, 152, 273, 276

[29] M. S. Eldred, S. L. Brown, B. M. Adams, D. M. Dunlavy, D. M. Gay, L. P. Swiler, A. A. Giunta, W. E.
Hart, J.-P. Watson, J. P. Eddy, J. D. Griffin, P. D. Hough, T. G. Kolda, M. L. Martinez-Canales, and P. J.
Williams. DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter
estimation, uncertainty quantification, and sensitivity analysis: Version 4.0 reference manual. Technical
Report SAND2006-4055, Sandia National Laboratories, Albuquerque, NM, 2006. Available online from
http://endo.sandia.gov/DAKOTA/software.html . 26, 37, 39, 40, 43, 50, 54, 79, 104, 105,
106, 107, 108, 116, 119, 120, 123, 129, 138, 144, 145, 155, 157, 162, 163, 165, 181, 185, 188, 202, 234,
235, 249, 256

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

http://www.cs.sandia.gov/ISUG97/program.html
http://endo.sandia.gov/DAKOTA/software.html

BIBLIOGRAPHY 287

[30] M. S. Eldred, S. L. Brown, B. M. Adams, D. M. Dunlavy, D. M. Gay, L. P. Swiler, A. A. Giunta, W. E.
Hart, J.-P. Watson, J. P. Eddy, J. D. Griffin, P. D. Hough, T. G. Kolda, M. L. Martinez-Canales, and P. J.
Williams. DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter
estimation, uncertainty quantification, and sensitivity analysis: Version 4.0 developers manual. Technical
Report SAND2006-4056, Sandia National Laboratories, Albuquerque, NM, 2006. Available online from
http://endo.sandia.gov/DAKOTA/software.html . 62, 137, 139, 166, 213, 214

[31] M. S. Eldred, A. A. Giunta, and S. S. Collis. Second-order corrections for surrogate-based optimization
with model hierarchies. InProceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimiza-
tion Conference, Albany, NY,, Aug. 30–Sept. 1, 2004. AIAA Paper 2004-4457.135, 138

[32] M. S. Eldred, A. A. Giunta, S. F. Wojtkiewicz Jr., and T. G. Trucano. Formulations for surrogate-based
optimization under uncertainty. InProc. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, number AIAA-2002-5585, Atlanta, GA, September 4–6, 2002.145, 148, 150, 276

[33] M. S. Eldred and W. E. Hart. Design and implementation of multilevel parallel optimization on the Intel
TeraFLOPS. InProc. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Opti-
mization, number AIAA-98-4707, pages 44–54, St. Louis, MO, September 2–4 1998.215, 216

[34] M. S. Eldred, W. E. Hart, W. J. Bohnhoff, V. J. Romero, S. A. Hutchinson, and A. G. Salinger. Utilizing
object-oriented design to build advanced optimization strategies with generic implementation. InProc. 6th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, number AIAA-96-
4164, pages 1568–1582, Bellevue, WA, September 4–6 1996.167, 216

[35] M. S. Eldred, W. E. Hart, B. D. Schimel, and B. G. van Bloemen Waanders. Multilevel parallelism for op-
timization on MP computers: Theory and experiment. InProc. 8th AIAA/USAF/NASA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization, number AIAA-2000-4818, Long Beach, CA, 2000.226,
229, 231, 233

[36] M. S. Eldred, D. E. Outka, W. J. Bohnhoff, W. R. Witkowski, V. J. Romero, E. R. Ponslet, and K. S. Chen.
Optimization of complex mechanics simulations with object-oriented software design.Computer Modeling
and Simulation in Engineering, 1(3), August 1996.167

[37] M. S. Eldred and B. D. Schimel. Extended parallelism models for optimization on massively parallel
computers. InProc. 3rd World Congress of Structural and Multidisciplinary Optimization (WCSMO-3),
number 16-POM-2, Amherst, NY, May 17–21 1999.125

[38] G. M. Fadel, M. F. Riley, and J.-F. M. Barthelemy. Two point exponential approximation method for
structural optimization.Structural Optimization, 2(2):117–124, 1990.59, 90, 140

[39] D. Flaggs. JPrePost user’s manual. In preparation.208

[40] R. Fletcher, S. Leyffer, and P. L. Toint. On the global convergence of a filter-SQP algorithm.SIAM J.
Optim., 13(1):44–59, 2002.129

[41] R. Fourer, D. M. Gay, and B. W. Kernighan.AMPL: A Modeling Language for Mathematical Programming,
2nd ed.Duxbury Press/Brooks/Cole Publishing Co., Pacific Grove, CA, 2003.163

[42] J. H. Friedman. Multivariate adaptive regression splines.Annals of Statistics, 19(1):1–141, March 1991.
60, 143

[43] D. M. Gay. Hooking your solver to AMPL. Technical Report Technical Report 97-4-06, Bell Laboratories,
Murray Hill, NJ, 1997. 163

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

http://endo.sandia.gov/DAKOTA/software.html

288 BIBLIOGRAPHY

[44] R. Ghanem and J. R. Red-Horse. Propagation of probabilistic uncertainty in complex physical systems
using a stochastic finite element technique.Physica D, 133:137–144, 1999.55, 79, 95

[45] R. G. Ghanem and P. D. Spanos.Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, New
York, 1991. 55, 79, 95

[46] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. User’s guide for NPSOL (Version 4.0): A Fortran
package for nonlinear programming. Technical Report TR SOL-86-2, System Optimization Laboratory,
Stanford University, Stanford, CA, 1986.56, 107

[47] P. E. Gill, W. Murray, and M. H. Wright.Practical Optimization. Academic Press, San Diego, CA, 1981.
15, 24, 115, 127, 261

[48] D. Gilly. UNIX in a Nutshell. O’Reilly and Associates, Inc., Sebastopol, CA, 1992.200

[49] A. A. Giunta. Use of data sampling, surrogate models, and numerical optimization in engineering design.
In Proc. 40th AIAA Aerospace Science Meeting and Exhibit, number AIAA-2002-0538, Reno, NV, January
2002. 133

[50] A. A. Giunta and M. S. Eldred. Implementation of a trust region model management strategy in the
DAKOTA optimization toolkit. InProc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, number AIAA-2000-4935, Long Beach, CA, September 6–8, 2000.120, 133,
152

[51] A. A. Giunta and L. T. Watson. A comparison of approximation modeling techniques: Polynomial versus
interpolating models. InProc. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, number AIAA-98-4758, pages 392–404, St. Louis, MO, 1998.60, 142

[52] D. E. Goldberg.Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wessley
Publishing Co., Inc., Reading, MA, 1989.39

[53] W. Gropp and E. Lusk. User’s guide for mpich, a portable implementation of MPI. Technical Report
ANL/MCS-TM-ANL-96/6, Argonne National Laboratory, Mathematics and Computer Science Division,
1996. 233

[54] W. Gropp, E. Lusk, and A. Skjellum.Using MPI, Portable Parallel Programing with the Message-Passing
Interface. The MIT Press, Cambridge, MA, 1994.223

[55] R. T. Haftka and Z. Gurdal.Elements of Structural Optimization. Kluwer, Boston, 1992.15, 39

[56] A. Haldar and S. Mahadevan.Probability, Reliability, and Statistical Methods in Engineering Design.
Wiley, New York, 2000. 15, 19, 85, 87, 157, 271

[57] W. E. Hart. Coliny users manual: Version 2.0. Technical Report SAND2006-xxxx, Sandia National
Laboratories, Albuquerque, NM, 2006. Available online fromhttp://software.sandia.gov/
Acro/Coliny/ . 37, 39, 40, 104

[58] J. C. Helton and F. J. Davis. Sampling-based methods for uncertainty and sensitivity analysis. Technical
Report SAND99-2240, Sandia National Laboratories, Albuquerque, NM, 2000.80

[59] M. Hohenbichler and R. Rackwitz. Sensitivity and importance measures in structural reliability.Civil Eng.
Syst., 3:203–209, 1986.151

[60] M. Hohenbichler and R. Rackwitz. Improvement of second-order reliability estimates by importance sam-
pling. J. Eng. Mech., ASCE, 114(12):2195–2199, 1988.91

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

http://software.sandia.gov/Acro/Coliny/
http://software.sandia.gov/Acro/Coliny/

BIBLIOGRAPHY 289

[61] H.P. Hong. Simple approximations for improving second-order reliability estimates.J. Eng. Mech., ASCE,
125(5):592–595, 1999.91, 272

[62] P. D Hough, T. G. Kolda, and V. J. Torczon. Asynchronous parallel pattern search for nonlinear opti-
mization. Technical Report SAND2000-8213, Sandia National Laboratories, Livermore, CA, 2000.55,
104

[63] R. L. Iman and M. J Shortencarier. A Fortran 77 program and user’s guide for the generation of latin
hypercube samples for use with computer models. Technical Report NUREG/CR-3624, SAND83-2365,
Sandia National Laboratories, Albuquerque, NM, 1984.54, 80, 139

[64] A. Karamchandani and C. A. Cornell. Sensitivity estimation within first and second order reliability meth-
ods.Struct. Saf., 11:95–107, 1992.151

[65] B. W. Kernighan and D. M. Ritchie.The C Programming Language. Prentice Hall PTR, Englewood Cliffs,
NJ, 2nd edition, 1988.167, 169, 174, 220

[66] J. R. Koehler and A. B. Owen. Computer experiments. In S. Ghosh and C. R. Rao, editors,Handbook of
Statistics, volume 13. Elsevier Science, New York, 1996.73, 142

[67] N. Kuschel and R. Rackwitz. Two basic problems in reliability-based structural optimization.Math. Method
Oper. Res., 46:309–333, 1997.272, 276

[68] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multilinear singular value decomposition.SIAM
Journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000.135

[69] C. L. Lawson and R. J. Hanson.Solving Least Squares Problems. Prentice–Hall, 1974.131

[70] R. M. Lewis and S. N. Nash. A multigrid approach to the optimization of systems governed by differential
equations. Technical Report AIAA-2000-4890, AIAA, 2000.138

[71] A. Martelli. Python in a Nutshell. O’Reilly and Associates, Cambridge, MA, 2003.205

[72] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting values of
input variables in the analysis of output from a computer code.Technometrics, 21(2):239–245, 1979.80

[73] J. C. Meza. OPT++: An object-oriented class library for nonlinear optimization. Technical Report
SAND94-8225, Sandia National Laboratories, Livermore, CA, 1994.36, 56, 107, 116

[74] R. H. Myers and D. C. Montgomery.Response Surface Methodology: Process and Product Optimization
Using Designed Experiments. John Wiley & Sons, Inc., New York, 1995.77, 141

[75] J. Nocedal and Wright S. J.Numerical Optimization. Springer Series in Operations Research. Springer,
New York, 1999. 15, 127, 261

[76] W. .L. Oberkampf and J. C. Helton. Evidence theory for engineering applications. (SAND2003-3559P),
2003. 95, 98

[77] E. O. Omojokun.Trust Region Algorithms for Optimization with Nonlinear Equality and Inequality Con-
straints. PhD thesis, University of Colorado, Boulder, Colorado, 1989.128

[78] V. M. Pérez, M. S. Eldred, , and J. E. Renaud. Solving the infeasible trust-region problem using approxima-
tions. InProceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
Albany, NY, Aug. 30–Sept. 1, 2004. AIAA Paper 2004-4312.128, 131

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

290 BIBLIOGRAPHY

[79] V. M. Pérez, J. E. Renaud, and L. T. Watson. An interior-point sequetial approximation optimization
methodology.Structural and Multidisciplinary Optimization, 27(5):360–370, July 2004.127, 128, 131

[80] C. D. Perttunen, D. R. Jones, and B. E. Stuckman. Lipschitzian optimization without the Lipschitz constant.
J. Optimization Theory and Application, 79(1):157–181, 1993.104

[81] E. R. Ponslet and M. S. Eldred. Discrete optimization of isolator locations for vibration isolation sys-
tems: an analytical and experimental investigation. InProc. 6th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, number AIAA-96-4178, pages 1703–1716, Bellevue, WA,
September 4–6 1996. Also appears as Sandia Technical Report SAND96-1169, May 1996.104

[82] R. Rackwitz. Optimization and risk acceptability based on the Life Quality Index.Struct. Saf, 24:297–331,
2002. 151

[83] R. Rackwitz and B. Fiessler. Structural reliability under combined random load sequences.Comput. Struct.,
9:489–494, 1978.88

[84] T. D. Robinson, M. S. Eldred, K. E. Willcox, and R. Haimes. Strategies for multifidelity optimization with
variable dimensional hierarchical models. InProceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Struc-
tures, Structural Dynamics, and Materials Conference (2nd AIAA Multidisciplinary Design Optimization
Specialist Conference), Newport, RI, May 1–4, 2006. AIAA Paper 2006-1819.135

[85] T. D. Robinson, K. E. Willcox, M. S. Eldred, and R. Haimes. Multifidelity optimization for variable-
complexity design. InProceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, Portsmouth, VA, September 6–8, 2006. AIAA Paper 2006-7114.135

[86] J. F. Rodriguez, J. E. Renaud, and L. T. Watson. Convergence of trust region augmented lagrangian methods
using variable fidelity approximation data.Structural Optimization, 15:1–7, 1998.127

[87] M. Rosenblatt. Remarks on a multivariate transformation.Annals of Mathematical Statistics, 23(3):470–
472, 1952. 85, 88

[88] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto.Sensitivity Analysis in Practice: A Guide to
Assessing Scientific Models.John Wiley & Sons, 2004.77

[89] K. Schittkowski.More Test Examples for Nonlinear Programming, Lecture Notes in Economics and Math-
ematical Systems, Vol. 282. Springer-Verlag, Berlin, 1987.261

[90] K. Schittkowski. NLPQLP: A fortran implementation of a sequential quadratic programming algorithm
with distributed and non-monotone line search – user’s guide. Technical report, Department of Mathemat-
ics, University of Bayreuth, Bayreuth, Germany, 2004.56, 106, 217

[91] P. R. Schunk, P. A. Sackinger, R. R. Rao, K. S. Chen, and R. A. Cairncross. GOMA – a full-newton finite
element program for free and moving boundary problems with coupled fluid/solid momentum, energy,
mass, and chemical species transport: User’s guide. Technical Report SAND95-2937, Sandia National
Laboratories, Albuquerque, NM, 1995.257

[92] G. D. Sjaardema. APREPRO: An algebraic preprocessor for parameterizing finite element analyses. Tech-
nical Report SAND92-2291, Sandia National Laboratories, Albuquerque, NM, 1992.158, 160

[93] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra.MPI: The Complete Reference. MIT
Press, Cambridge, MA, 1996.223

[94] R. Sues, M. Aminpour, and Y. Shin. Reliability-based multidisciplinary optimization for aerospace systems.
In Proc. 42rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
number AIAA-2001-1521, Seattle, WA, April 16-19 2001.274

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

BIBLIOGRAPHY 291

[95] L. P. Swiler and G. D. Wyss. A user’s guide to Sandia’s latin hypercube sampling software: LHS UNIX
library and standalone version. Technical Report SAND04-2439, Sandia National Laboratories, Albu-
querque, NM, July 2004.71, 80, 157

[96] C. H. Tong and J. C. Meza. DDACE: A distributed object-oriented software with multiple samplings for
the design and analysis of computer experiments. Technical Report SAND##-XXXX, Sandia National
Laboratories, Livermore, CA. Draft as yet unpublished, see alsohttp://csmr.ca.sandia.gov/
projects/ddace/DDACEdoc/html/index.html . 54, 71, 73, 139, 143

[97] J. Tu, K. K. Choi, and Y. H. Park. A new study on reliability-based design optimization.J. Mech. Design,
121:557–564, 1999.88

[98] L. Tvedt. Distribution of quadratic forms in normal space – applications to structural reliability.J. Eng.
Mech., ASCE, 116(6):1183–1197, 1990.272

[99] G. N. Vanderplaats. CONMIN – a FORTRAN program for constrained function minimization. Technical
Report TM X-62282, NASA, 1973. See also Addendum to Technical Memorandum, 1978.31, 55, 105

[100] G. N. Vanderplaats.Numerical Optimization Techniques for Engineering Design: With Applications.
McGraw-Hill, New York, 1984. 15, 127, 130

[101] Vanderplaats Research and Development, Inc., Colorado Springs, CO.DOT Users Manual, Version 4.20,
1995. 56, 105

[102] L. Wall, T. Christiansen, and R. L. Schwartz.Programming Perl. O’Reilly & Associates, Cambridge, 2nd
edition, 1996. 205

[103] B. Walton. BPREPRO preprocessor documentation. Online documenthttp://bwalton.com/
bprepro.html . 208

[104] G. Weickum, M. S. Eldred, and K. Maute. Multi-point extended reduced order modeling for design op-
timization and uncertainty analysis. InProceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference (2nd AIAA Multidisciplinary Design Optimization Spe-
cialist Conference), Newport, RI, May 1–4, 2006. AIAA Paper 2006-2145.135

[105] Y.-T. Wu, Y. Shin, R. Sues, and M. Cesare. Safety-factor based approach for probability-based design
optimization. InProc. 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, number AIAA-2001-1522, Seattle, WA, April 16–19 2001.152, 274

[106] Y.-T. Wu and P.H. Wirsching. A new algorithm for structural reliability estimation.J. Eng. Mech., ASCE,
113:1319–1336, 1987.88

[107] B. A. Wujek and J. E. Renaud. New adaptive move-limit management strategy for approximate optimiza-
tion, part 1.AIAA Journal, 36(10):1911–1921, 1998.129

[108] B. A. Wujek and J. E. Renaud. New adaptive move-limit management strategy for approximate optimiza-
tion, part 2.AIAA Journal, 36(10):1922–1934, 1998.129

[109] S. Xu and R. V. Grandhi. Effective two-point function approximation for design optimization.AIAA J.,
36(12):2269–2275, 1998.59, 90, 140

[110] D. C. Zimmerman. Genetic algorithms for navigating expensive and complex design spaces, September
1996. Final Report for Sandia National Laboratories contract AO-7736 CA 02.60, 142

[111] T. Zou, S. Mahadevan, and R. Rebba. Computational efficiency in reliability-based optimization. In
Proceedings of the 9th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability,
Albuquerque, NM, July 26–28, 2004.152

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006

http://csmr.ca.sandia.gov/projects/ddace/DDACEdoc/html/index.html
http://csmr.ca.sandia.gov/projects/ddace/DDACEdoc/html/index.html
http://bwalton.com/bprepro.html
http://bwalton.com/bprepro.html

	Preface
	Introduction
	Motivation for DAKOTA Development
	Capabilities of DAKOTA
	How Does DAKOTA Work?
	Background and Mathematical Formulations
	Using this Manual

	Getting Started with DAKOTA
	Installation Guide
	Rosenbrock and Textbook Test Problems
	DAKOTA Input File Format
	Example Problems
	Where to Go from Here

	DAKOTA Capability Overview
	Purpose
	Parameter Study Methods
	Design of Experiments
	Uncertainty Quantification
	Optimization Software Packages
	Additional Optimization Capabilities
	Nonlinear Least Squares for Parameter Estimation
	Optimization Strategies
	Surrogate Models
	Nested Models
	Parallel Computing
	Summary

	Parameter Study Capabilities
	Overview
	Vector Parameter Study
	List Parameter Study
	Centered Parameter Study
	Multidimensional Parameter Study

	Design of Experiments Capabilities
	Overview
	Design of Computer Experiments
	DDACE Background
	FSUDace Background
	Sensitivity Analysis

	Uncertainty Quantification Capabilities
	Overview
	Sampling Methods
	Reliability Methods
	Polynomial Chaos Methods
	Epistemic Nondeterministic Methods
	Future Nondeterministic Methods

	Optimization Capabilities
	Overview
	Optimization Software Packages
	Additional Optimization Capabilities

	Nonlinear Least Squares Capabilities
	Overview
	Solution Techniques
	Examples

	Advanced Optimization Strategies
	Overview
	Multilevel Hybrid Optimization
	Multistart Local Optimization
	Pareto Optimization
	Mixed Integer Nonlinear Programming (MINLP)
	Surrogate-Based Optimization (SBO)

	Models
	Overview
	Single Models
	Surrogate Models
	Nested Models
	Advanced Examples

	Variables
	Overview
	Design Variables
	Uncertain Variables
	State Variables
	Mixed Variables
	DAKOTA Parameters File Data Format
	The Active Set Vector

	Interfaces
	Overview
	Algebraic Mappings
	Simulation Interfaces
	Simulation Interface Components
	Simulation File Management
	Parameter to Response Mappings

	Responses
	Overview
	DAKOTA Results File Data Format
	Active Variables for Derivatives

	Inputs to DAKOTA
	Overview of Inputs
	JAGUAR
	Data Imports

	Output from DAKOTA
	Overview of Output Formats
	Standard Output
	Tabular Output Data
	Graphics Output
	Error Messages Output

	Advanced Simulation Code Interfaces
	Building an Interface to a Engineering Simulation Code
	Developing a Direct Simulation Interface

	Parallel Computing
	Overview
	Single-level parallelism
	Multilevel parallelism
	Capability Summary
	Running a Parallel DAKOTA Job
	Specifying Parallelism

	DAKOTA Usage Guidelines
	Problem Exploration
	Optimization Method Selection
	UQ Method Selection
	Parameter Study/DOE/DACE/Sampling Method Selection

	Restart Capabilities and Utilities
	Restart Management
	The DAKOTA Restart Utility

	Simulation Failure Capturing
	Failure detection
	Failure communication
	Failure mitigation

	Additional Examples
	Textbook Example
	Rosenbrock Example
	Cylinder Head Example
	Container Example
	Log Ratio Example
	Steel Section Example
	Portal Frame Example
	Short Column Example
	Cantilever Example
	Steel Column Example
	Multiobjective Examples

